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Câmpus Cornélio Procópio
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Resumo

Ao longo deste trabalho, problemas relacionados aos sistemas de comunicação
equipados com múltiplas antenas no transmissor e receptor (MIMO - Multiple-
Input Multiple-Output) são analisados sob o ponto de vista de detecção clássica,
da otimização não-linear, bem como da pré-codificação linear, desde MIMO con-
vencional (algumas antenas no Tx e Rx) até sistemas MIMO de larga-escala
(massivo). Inicialmente, a eficiência de detecção de vários detectores MIMO
foi analisada sob a prerrogativa de canais altamente correlacionados, situação
em que sistemas MIMO apresentam elevada perda de desempenho, além de, em
alguns casos, uma crescente complexidade. Diante deste cenário, foi estudado
especificamente o comportamento em termos do compromisso complexidade ×
taxa de erro de bits (BER - Bit Error Rate), para diferentes técnicas de detecção,
como o cancelamento de interferências sucessivo (SIC), redução treliça (LR), bem
como a combinação de cada uma destas às técnicas lineares de detecção. Nessa
análise, também foram considerados diferentes estruturas de antennas uniformes
com arranjos geométricos lineares (ULA - uniform linear array) e de arranjo pla-
nar (UPA - uniform planar array) em ambos transmissor e receptor. Além disso,
também foram considerados diferentes número de antenas e ordem de modulação.
Em seguida, o problema de detecção MIMO foi estudado sob uma perspectiva
de otimização não-linear, visando especificamente alcançar o desempenho ótimo.
Foi analisada a solução de detecção com relaxação semi-definida (SDR - semi-
definite relaxation). O detector SDR-MIMO é uma abordagem eficiente capaz
de atingir o desempenho muito próximo ao ótimo, especialmente para baixas e
médias ordens de modulação. Concentramos nossos esforços no desenvolvimento
de uma aproximação computacionalmente eficiente para o algoritmo de detecção
de máxima verossimilhança (ML - Maximum Likelihood) MIMO baseado na pro-
gramação semi-definida (SDP - Semidefinite Programming) para as constelações
M -QAM. Finalmente, estuda-se um problema de alocação de potência com o
objetivo de maximizar a capacidade de um canal de broadcasting MIMO mas-
sivo em uma única celula equipada com pré-codificação forçagem à zero (ZFBF
- zero-forcing beamforming) e inversão de canal regularizado (RCI - regularized
channel inversion) na estação rádio base (BS). Nosso objetivo é investigar esse
problema considerando um sistema massivo no limite, ou seja, quando o número
de usuários, K, e antenas na BS, M , tendem ao infinito porém com uma razão
constante, β = K

M
. Primeiramente deriva-se a relação sinal-interferência mais

rúıdo (SINR) para ambos os pré-codificadores escolhidos. Em seguida, investiga-
se um esquemas de alocação de potência ótimo que maximiza a soma das capa-
cidades por antena sob uma restrição de potência máxima dispońıvel, conclui-se
que o problema é convexo e que a alocação de potência ótima segue a estratégia
de watter-filling (WF). Também estudou-se o problema relacionado à alocação de
potência em um grupo finito de usuários separados em grupos e determinou-se o
impacto desse esquema na capacidade total do sistema.

Palavras Chave: MIMO, MIMO Massivo , Detecção, Pré-codificação, Oti-
mização



Abstract

Throughout this work, problems related to communication systems equipped
with multiple antennas in the transmitter and receiver (MIMO - Multiple-Input
Multiple-Output) are analyzed from the point of view of classical detection, non-
linear optimization, as well as linear pre-coding, from conventional MIMO (some
Tx and Rx antennas) to large-scale (massive) MIMO systems. Initially, the de-
tection efficiency of several MIMO detectors were analyzed under the prerogative
of highly correlated channels, in which situation, MIMO systems present a high
loss of performance, and, in some cases, an increasing complexity. Considering
this scenario, we have specifically studied the behavior in terms of compromise
complexity × bit error rate (BER), for different detection techniques, such as the
successive interference cancellation (SIC), lattice reduction (LR), as well as the
combination of each of these with linear detection techniques. In this analysis,
different uniform antenna structures with uniform linear array (ULA) and planar
array array (UPA) were also considered in both transmitter and receiver side.
In addition, different number of antennas and order of modulation were also
considered. Next, the MIMO detection problem was studied from a nonlinear
optimization perspective, specifically aiming to achieve optimum performance.
The detection solution with semi-defined relaxation (SDR - it semidefinite relax-
ation) were analyzed. The SDR-MIMO detector is an efficient approach capable
of achieving near-optimal performance, especially for low and medium modula-
tion orders. We focused our efforts on developing a computationally efficient
approach for the maximum likelihood (ML) MIMO detection algorithm based on
semi-definite programming (SDP) for M -QAM constellations. Finally, we study
an optimal power allocation problem aiming to maximizes the sum-rate capac-
ity of a single cell massive MIMO broadcast channel equipped with zero-forcing
beamforming (ZFBF) and regularized channel inversion (RCI) precoding at the
base station (BS). Our purpose is to investigate this problem in the large-scale
system limit, i.e, when the number of users, K, and antennas at the BS, M , tend
to infinity with a ratio β = K

M
being held constant. We first derive the signal to

interference plus noise (SINR) ratio for both chosen precoders. Then we investi-
gate optimal power allocation schemes that maximize the sum-rate per antenna
under an average power constraint and we show that the problem is convex and
the power allocation follows the well-known Water-Filling strategy. We also stud-
ied a problem related to an optimal power allocation at a finite group of clustered
users and determine the impact of this scheme in the ergodic sum-rate capacity.

Keywords: MIMO, Massive MIMO, Detection, Precoding, Optimization
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Conventions and Notations

The following mathematical notations where adopted in this work:
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Boldface upper case letters denote matrices;
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(·)H Hermitian operator (transposition and conjugation);

(·)T Transposition operator;

(·)? Conjugation operator;

(·)† Moore-Penrose pseudo-inverse;

(·)∗ Optimal solution;

det(·) Determinant of an Square Matrix;

‖·‖n Norm of order n;

tr (·) Trace operation;

(̃·) Boldface lower case letter with tilde superscript represent a sym-

bol vector estimation;

(̂·) Boldface lower case with hat superscript represents a symbol

estimation after a slicer;

diag(·) Diagonalization Operation;

b·e Round Operation;

d·e Superior Round Operation;

b·c Inferior Round Operation;

Im Identity matrix of order m;

0m×n All zero matrix of size m× n;



1m×n All ones matrix of size m× n;

CN{µ, σ2} Gaussian Random Variable circularly-symmetric with mean µ

and variance σ2;

O(·) Complexity order of an operation or algorithm;

E [·] Statistical Expectation;

C Complex numbers set;

N Natural numbers set;

Z Integer numbers set;

<{·} Real part of a complex number;

={·} Imaginary part of a complex number;
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nR Number of antennas at the receiver

s Transmitted symbols vector

H MIMO systems channel matrix

n Additive Gaussian Noise Vector
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Q,R Orthogonal and upper triangular matrices provided by the QR

decomposition

H† Channel pseudo-inverse or ZF equalization matrix

H Channel matrix extended version

x Received signal extended version

Π Permutation matrix for ordered detection

H̃ Channel matrix in LR domain

T Unimodular matrix generated from LLL algorithm

z Transmitted signal vector in LR domain

z̃ Estimated symbol vector in LR domain

ẑ Estimated and quantized symbol vector in LR domain

β′ Variable used for quantization in LR domain

H̃ Extended version of the channel matrix in LR domain

T Unimodular T matrix extended version

Q̃, R̃ Orthogonal and upper triangular matrices provided by the QR

decomposition of the channel matrix H̃ in LR domain

Chapter 3

nT Number of antennas at the transmitter

nR Number of antennas at the receiver

s Transmitted symbols vector

H MIMO systems channel matrix

n Additive Gaussian Noise Vector

x Received vector after passing symbols through the channel

σ2
n Noise Variance

S Complex symbols Set

M Modulation Order

Es Transmitted symbols mean energy

ŝ Estimated symbol vector after the slicer

L Auxiliary matrix to closure the QCQP problem in the SDP form

X Relaxed solution set matrix

e All ones vector

IL, SL Inferior and superior constellation limits on the first constraint

of our SDP problem.

m,n, ε Number of constraints, SDP problem size and solution accuracy

for worst case complexity evaluation.



λi Eigenvalue of the i-th line for the eigen-decomposition of X∗

U Lower triangular matrix with real and positive diagonal entries

Sg Number of randomization samples

Chapter 4

M Number of antennas at the BS transmitter

K Number of single-antenna users (receivers)

β Ratio between M and N (Cell-loading)

x Transmitted symbols vector

A Path-loss coefficient matrix

H MIMO systems channel matrix

n Additive Gaussian Noise Vector

y Received vector after passing symbols through the channel

σ2
n Noise Variance

G Linear Precoding Matrix

P Vector representing the power allocated for each user

P Total available transmit power

ak Path-Loss associated to user k

γ SNR at the receiver

SINRk SINR per user

λ Signal wave length

Rh Transmit correlation matrix

Rk Sum-Rate capacity of user k

RΣ Ergodic sum-rate capacity

Gzf ZFBF precoding matrix

α Parameter ensuring the transmit power constraint (power nor-

malization)

SINRk,zf SINR of user k under ZFBF precoder

Grci RCI precoding matrix

ξ Regularization parameter

SINRk,rci SINR of user k under RCI precoder

Gbf MF precoding matrix

p∗k Optimal allocated power

µ Water level

KA Number of active antennas before water-filling strategy

X Rectangular matrix with independent entries

fβ(x) Probability density function of an Hermitian matrix XXH , which

is given by the Marc̆enko-Pastur law



X Real valued random value

FX Probability distribution function of a X

mX Stieltjes transform of FX , or probability distribution function of

FX in the large limit.

Λ Diagonal matrix containing the eigenvalues of X

x Random vector whose entries are i.i.d. with zero mean and va-

riance
1

N
AN Any CN×N matrix with uniformly bounded spectral norm.

B Any CN×n, n < N matrix, where the entries are i.i.d. elements

with zero mean and variance
1

N
ν Regularization parameter in the Large System limit

g(β, ν) Probability distribution of gN = x
(
BBH + νIN

)
xH

S(β, ν) Signal in the Large Limit

I(β, ν) Interference in the Large Limit

SINR∞(γ, β, ν) Deterministic limiting SINR

R∞k Limiting sum rate capacity per-user

P Empirical mean of the users power or just average power.

b Path-loss Exponent

L Number of Clusters

R Cell-Radius

R∞Σ Limiting Achievable sum rate capacity

L Lagrangian for problem (4.46)

λ, µj, κ Associated Lagrange multipliers
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1 Introduction

Nowadays the telecommunications services and their technological advances

present an indispensable role in our lives. We are surrounded by devices that

provide multimedia services in real time, such as smartphones, tablets, cable

TVs. They have caused great changes in the way that human beings interact

to each other and with the world that surrounds them. The communications

services and the use of devices are increasing every year, as they have the purpose

of promoting convenience, security, leisure and connection to their users. As a

result, there are growing demands for telecommunication services in terms of

number of users served simultaneously occupying the same frequency spectrum,

new services requiring higher transmission rates, and higher network speeds.

Such demands require more capacity and reliability from today’s wireless sys-

tems. However, this technological demand arises in a scenario in which spectrum

and energy availabilities become increasingly limited because of a variety of ser-

vices sharing the wireless channel, while there is a growing concern about saving

energy. In this context, one of the most promising solutions to this problem is

the technology of multiple antennas in both transmission and reception, known

as MIMO (multiple-input multiple-output). MIMO systems are one of the main

foundations of modern wireless communication systems such as Long Term Evolu-

tion (LTE), 3GPP LTE-Advanced (LTE-A), IEEE 802.11 (Wi-Fi), IEEE 802.16e

- Worldwide Interoperability for Microwave Access (WiMAX) (HANZO et al., 2010;

LI et al., 2010), due to the high energy and spectral efficiency rates achieved.

Despite the first appearances of the MIMO systems in literature are in the

early twentieth century (FOSCHINI; GANS, 1998), the applications in practical

communication systems can be considered recent (LI et al., 2010). Since their

inception, several technological advances has been proposed and implemented (at

least in terms of proof-of-concept), focusing to close the demand gap that emerges

every year. On the next generation of communication systems, namely the fifth

generation (5G), one of the most potential technologies that has been considered

for application is the massive or large-scale MIMO systems, which consists in
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the usage of a MIMO with very large antenna arrays at both transmission and

receiver sides (RUSEK et al., 2013; BOCCARDI et al., 2014).

When it comes to point-to-point MIMO communications, the transmitted

signals are linearly combined through the wireless link, which create possibilities

to enhance the system features. There are techniques designed to achieve diversity

gains and improve channel reliability, such as those related to space-time block

coding (TAROKH et al., 1999; ZHENG; QIU; ZHU, 2004), and those that operate

with spatial multiplexing, which are intended to maximize data rates by providing

multiplexing gains (WOLNIANSKY et al., 1998).

For MIMO systems, there are two families of detectors with promising per-

formance × complexity tradeoff: a) sphere decoding (SD) based MIMO detector;

and b) the ones based on semidefinite relaxation (SDR). The SD detectors can

achieve the same solution as the optimum maximum likelihood (ML) detector,

however, they require lower complexity for solutions in high signal-to-noise (SNR)

regime. On the other hand, the SD-based detectors are inefficient for large ar-

ray size problems, with high order constellation or even in low SNR regime. In

such situations, the SD complexity is expected to grow exponentially, i.e, to the

same complexity order of the ML detector, becoming inefficient in those system

configuration scenarios.

On the other hand, for the SDR-based MIMO detector, the result comple-

xity becomes polynomial in association with promising performance results. The

semidefinite relaxation is an optimization technique used to solve many different

problems related to non-linear optimizations, specially applied to telecommunica-

tion problems. On MIMO systems, the SDR-based detection was first proposed

for low constellation order problems, such as, binary/quadratic phase shift keying

(BPSK/QPSK) (JALDEN; MARTIN; OTTERSTEN, 2003; MA; CHING; DING, 2004);

in which very near-ML optimal performance was observed. These results sug-

gest that even with higher constellations, there is a high probability that SDR

will yield the true ML decision; so in Mao, Wang e Wang (2007) the SDR de-

tection problem was generalized considering 4q-QAM (q ≥ 1) modulation orders

demonstrating the potential of the SDR-based detection.

Lattice reduction (LR) technique has been deployed to enhance the detection

performance, specially in MIMO systems. This technique is applied in the pre-

detection phase, with the objective of aiding in the separation of the signal from

interference plus noise. Since LR is used to improve channel conditions, it allows

the use of simpler detection techniques (WUBBEN et al., 2011). As a consequence,
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with a small addition at the level of complexity, BER performance of the system

is able to achieve substantial improvement. The LR technique is based on a

mathematical concept developed to solve different problems involving points in

a lattice or trellis. A lattice is an arrangement of discrete points, which can be

described by infinite vector basis, with this wide range of vector basis options,

we have the flexibility to choose the most interesting for the problem in question.

When it comes to MIMO context, the closest the orthogonality, the better is

the performance of linear detectors; and the smaller the basis, lesser interference

between antennas; because of that features, in many applications the smallest

vector basis are the ones with most interest in MIMO systems applications (LING;

MOW; HOWGRAVE-GRAHAM, 2013).

There are many algorithms that can be used in order to implement the lattice

reduction technique; among them, one that stands out is the Lenstra, Lenstra

& Lovász (LLL) algorithm (LENSTRA; LENSTRA; LOVÁSZ, 1982). This algorithm

has shown greater viability when it comes to computational cost, due to present

polynomial complexity at any operative configuration of the system (LING; MOW;

GAN, 2009). Generically speaking, the LLL algorithm generates an unimodular

matrix, which transforms the coefficient channel matrix into a new equivalent

matrix, but using a new reduced vector basis and nearest to the orthogonality

condition.

Currently, the scenario of greatest interest in MIMO communications is the

multi-user application, where each cell has its own radio base station (BS) eqqui-

ped with multiple antennas, that serves a pre-determined number of users inside

the cell, all of them equipped with a single-antenna. In this case, the interest is to

increase simultaneously the energy efficiency (EE) and spectral efficiency (SE) of

order of 10-100 and 100-1000 times, respectively, higher than those achieved with

conventional small-scale MIMO. Indeed such results can be achieved deploying

a large number of antennas in the BS, typically hundreds of antenna elements,

hence the name massive or large-scale MIMO systems.

Even in MIMO point-to-point systems or in multi-user systems, work with

large system dimensions can bring a lot of benefits, such as, reaching higher

energy efficiency and/or spectral efficiency, as well as a greater number of users

served and mainly the system becomes immune to additive noise. Although some

problems arise with this configuration, as for instance, when the number of an-

tennas grow, the available space to accommodate them hold the same, causing

an increasing on the channel correlation effect. In general , the correlation effect

emerges as the distance between both transmit or receive antennas decreases, and
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the channel for those systems with physically close antennas becomes increasin-

gly similar. As the correlation between channels increase, spatial diversity and,

consequently, performance in MIMO systems are reduced substantially.

There are some alternatives to circumvent the problem of correlation between

antennas that can be listed. The first one, and simplest, is to increase the spacing

between them. However, it will lead to a lower quantity of antennas in determined

area. Another alternative is the use of one of the promising technologies for the

next generation of communications, the millimeter-waves (ROH et al., 2014). As

this technique is composed of extremely high frequencies, this leads to signals with

millimeter wavelength, which allows to decrease the antenna spacing until a half

wavelength (≈ λ/2) without incurs in substantial antenna/channel correlation.

Finally, MIMO detection techniques able to deal with the spacial correlation

between antennas can be applied; those techniques can attenuate the correlation

effect at high SNR regime, which is the case of the lattice reduction (WUBBEN et

al., 2004).

This work focus on the analysis of performance and complexity trade-off for

MIMO systems equipped with large arrays in different scenarios of channel corre-

lation and number of antennas, as well as modulation order. Different detection

and precoding techniques, that are able to achieve efficient operation, are analy-

zed under the proposed scenarios in order to determine the characteristics of each

one and identify its benefits.

In the sequel, the work contributions are summarized; also, more detailed

bibliographical reviews can be found at the respective chapters as well.

1.1 Work Contribution

• Chap. 2: This chapter provides a BER performance (reliability) × comple-

xity trade-off for a broad class of MIMO detectors operating under realistic

scenarios, where we consider different antennas structures under different

correlated channel and system scenarios. Lattice-reduction technique proves

its strength under correlated MIMO channels, increasing significantly the

BER performance; however, there is a concern with the complexity because

it scales exponentially as the correlation index grows. The combination of

both lattice-reduction and ordered successive cancellation technique aided

linear detectors delivered the best trade-off on the reliability × complexity

figures of merit; it is apparent that such combination techniques fits as the
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best choice for larger, correlated channels.

• Chap. 3: It also provides a BER performance (reliability) × comple-

xity tradeoff based on semidefinite relaxation MIMO detection procedures,

which are able to deliver a near optimum performance. The focus is the

evaluation of such class of MIMO detector under near large-scale antenna

condition, which consists in a unicellular scenario with high number of an-

tennas under correlated channels. Our results have proved that as the num-

ber of antennas increase, the lattice-reduction aided detectors have a lack of

performance. On the other hand the use of SDR strategy is able to hold the

performance suitable. Two algorithms which aims reconstruct the optimal

solution were analyzed, the Rank-1 approximation and the Gaussian ran-

domization; at the massive channel cases, where the number of antennas is

increased up to 128 for both transmit and receive ones, the Rank-1 appro-

ximation proved to be the best choice, since it provides a great performance

improvement while keeping an affordable complexity.

• Chap. 4: In this chapter, we provide an optimal power allocation scheme

aiming to maximize the sum-rate of a single cell massive MIMO broadcast

channel equipped with zero-forcing beamforming (ZFBF) and regularized

channel inversion (RCI) precoders at the base station (BS). We analyze the

problem from the perspective of an uniform linear array (ULA) antenna

structures at the BS, which is equipped with many antennas while mobile

users are fitted with a single-antenna causing them to become uncorrelated.

Our purpose is to investigate this problem in the large-scale limit, so it is

necessary to know the behavior of the signal-to-interference-plus-noise ratio

(SINR) in order to evaluate the system capacity. Knowing this, an investi-

gation related to an optimal power allocation scheme which maximize the

ergodic sum-rate capacity under the average power constraint is carried out.

We prove that the problem is convex and that the power allocation follows

the well-known Water-Filling (WF) strategy. Hence, the main contribution

of this part of the work is related to an optimal power allocation scheme

related to a finite group of clustered users and to determine the impact of

this scheme on the ergodic sum-rate capacity. Using the WF strategy our

goal is to ensure the best path-loss distribution over the cell which turns the

capacity to get close enough to the one achieved by the RCI-WF precoder

in a cell with uniform random user distribution.
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2 Efficient Detection for
Uniform Array MIMO
Systems under Correlated
Channels

The Multiple-Input Multiple-Output systems are recognized by the capacity

to provide significant spectral efficiency and/or performance enhancements on

wireless communication systems by the use of multiple antennas at both trans-

mitter and receiver sides. In spatial multiplexing gain mode, the deployment

of simultaneously transmit data streams through multiple antennas were deve-

loped to enhance the spectral efficiency at the cost of increasing data detection

complexity at the receiver side (WUBBEN et al., 2011). The V-Blast architecture,

proposed in the pioneer work Wolniansky et al. (1998), was able to exploit the

communication channel capacity, providing spatial multiplexing gain and high

data rates, which inspired so many works into multiple antenna systems. This

spacial multiplexing gain on MIMO systems is achieved by dividing the total

transmitted power over the antennas, taking advantage of the multi-path diver-

sity to achieve a great array gain, in other words, more bits per second per Hertz

of bandwidth are transmitted. Moreover, with MIMO systems, improvements

can be considered on the transmitted energy efficiency, data rates and/or symbol

error rates, being defined by the antennas disposal at array configuration and the

transmission-detection techniques applied. In project meanings, it is necessary

to balance these improvements with the available resources in the systems, this

procedure is crucial, since energy and spectrum are a scarce resource. Thereby,

the purpose is to provide solutions attaining to a performance improvement under

a low or moderate complexity constraint. Hence, the goal of this work consists in

study MIMO architectures equipped with low or moderate complexity detectors,

keeping appropriate BER performance under full diversity condition. Moreover,

linear MIMO detectors and their combinations with sub-optimal equalization te-

chniques like ordering , interference cancellation (SIC) and LR were studied in
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terms of performance-complexity trade-off.

Another relevant consideration in our work is the correlated fading channels;

as currently the physical size of communication devices are being greatly redu-

ced, the space to accommodate the antennas in those device is reducing as well.

In realistic MIMO systems, operating under ultra high frequency (UHF) ranges,

the desired antenna element spacing to provide an uncorrelated channel state is

reasonably great. Moreover, MIMO systems equipped with a great number of

antennas, and exploit the maximum multiplexing gain (or even the maximum

diversity gain) is a project challenge. Thereby, it is easy to conclude that a corre-

lated MIMO channel scenario will cause degradation effects on the performance,

as well as the achievable rates; and in practical conditions this will result in more

transmitting power needed. Hence, efficient MIMO detectors operating under

proper BER performance and transmit power limits, which is directly connected

to the SNR, are of great interest.

Recently, large (or massive) MIMO systems have arrived as a technology

for 5G systems carrying many promises (BOCCARDI et al., 2014), such as higher

spectral and energy efficiency and mainly the immunity to additive noise provided

by very large arrays (RUSEK et al., 2013). When the number of antennas becomes

large some effects arise, such as, channel properties that were random before

now appears deterministic; e.g, singular values of the channel matrix approach to

deterministic functions; system is limited by interference from other transmitters

because thermal noise is averaged out (RUSEK et al., 2013). Although, large arrays

bring two main problems: correlation between antennas and the signal processing

complexity. The first one comes from the fact that the accommodation area for

the large arrays are small, causing the effect of the correlated channels. The

second occurs due to an increasing demand of signal processing which arises from

the large number of antennas, which requires more hardware and operations from

the system. Therefore, the study on MIMO processing techniques is important to

know the limitations of each scenario and to analyze the best choices, in terms of

performance and complexity trade-off, to practical high efficiency communication

systems.

The decoupling of a transmitted signal originated from a received signal sam-

ple, can be designated as the main problem of MIMO detection. As it is known,

the MIMO systems send data over different antennas, that travel over different

paths, then the signal at the receiver side, at each antenna, is a combination of

every transmit antenna signal and the received signal is a combination of every

transmit antenna. There are many techniques on MIMO structures capable to
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decouple the transmitted signal, each one offers an achieved performance and a

complexity level, the design challenge is to balance the available resources into

the project requirements.

The optimal algorithm that achieves a minimum joint probability of error,

detecting all the symbols simultaneously, is the maximum likelihood (ML) detec-

tor, that is known to be NP-hard. It can be carried out with a brute force-search

over all possibilities in the transmitted vectors set, searching for the one that mi-

nimizes the Euclidean distance from the received vector. However, the expected

computation complexity of the ML receiver is unpractical for many applications.

Another possibility when considered looking for near-optimum performance is the

sphere decoding (SD), that is a promising approach on MIMO detection. The SD

provides lower complexity when compared to the ML for small noise value, but

remains complex under low or medium SNR regions for real communication sys-

tems, becoming of the same order of ML complexity for low SNR region (JALDEN,

2004; BARBERO; THOMPSON, 2008).

Moreover, classic linear MIMO detection approaches are considered, such as

the zero-forcing (ZF) detector which is know by being able to completely remove

inter-antenna interference, at the cost of a significantly increase at the additive

noise for ill conditioned channel matrices. There is also the minimum mean squa-

red error (MMSE)-based detector which can be considered as a better alternative,

once it considers the noise power throughout the symbol detection procedure. Be-

sides ZF and MMSE detectors when combined with SIC (BOHNKE et al., 2003)

perform an layer-by-layer detection canceling the interference form the previous

detected symbol. Since first layers detection errors can be propagated along the

algorithm, the ordered SIC (OSIC) (WOLNIANSKY et al., 1998; WUBBEN et al.,

2003) detector provides remarkable improvements on performance by detecting

the most reliable antennas first. Both ZF and MMSE detectors when combined

with OSIC turns into detection schemes able to provide lower complexity com-

pared to the ML or even the SD detector, however present greater degradation

in the BER performance. Furthermore, pre-processing techniques such as the

lattice reduction (LR) (VALENTE; MARINELLO; ABRÃO, 2014; MA; ZHANG, 2008;

WUBBEN et al., 2004) aided linear MIMO detectors can be used to simultaneously

provide performance improvement and complexity reduction, since the transfor-

med channel has quasi-orthogonality features it will improve the final quality of

the detected signal, achieving, in some cases, near-ML performance. The LR

computational complexity is recognized as polynomial in time; however, highly

correlated channel scenarios result in devastating impacts on the MIMO channel
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matrix estimation while the LR-aided linear MIMO detectors may result in an

undesirable additional complexity, especially when the system is equipped with a

high number of antennas (VALENTE; MARINELLO; ABRÃO, 2014). However, those

problems are part of the challenge to implement the applicability of large-MIMO

systems.

2.1 System Model

Considering a point-to-point MIMO system composed by nT transmit anten-

nas and nR receive antennas, where the transmitted data is demultiplexed over

the nT transmit antennas. A MIMO system topology is depicted in Fig.2.1.
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Figure 2.1: MIMO System with Spacial Multiplexing

The model is considered under an overdetermined MIMO system, i.e., nR ≥
nT , working in spatial multiplexing mode. A classical problem in MIMO systems

consists in reliably detect the transmitted symbol, despite the channel’s distortion

and noise (LARSSON, 2009). Thereby, the received signal can be described by:

x = Hs + n, (2.1)

where snT×1 symbols are transmitted through a channel which gain is represented

by HnR×nT and additive noise nnR×1. Each element of matrix H represents the

channel gain for a selected path and these gains are known at the receiver. The

column-vector xnR×1 represents the received signal vector, formed by the symbols

after passing through the channel. Furthermore, it is still possible to add a pre-

processing block that is responsible to modulation and coding steps, the last

one is not applied in this section, while the MIMO decoder works to recover

the transmitted data from the received signal, that is corrupted by noise and

inter-antenna interference.

It is also assumed that the noise vector n, are samples of additive noise
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represented as circularly-symmetric Gaussian distribution, n ∼ CN{0, σ2
nI}, with

variance σ2
n. An alternative way to represent the noise statistics is through the

covariance matrix E
[
nnH

]
= σ2

nInR

In order to achieve better spectral efficiency and performance we will consider

a M-QAM modulation, where the symbols are denoted by a complex number

which real and imaginary part are limited to ±
(√

M − 1
)

(BAI; CHOI; YU, 2014;

WUBBEN et al., 2004; KOBAYASHI; CIRIACO; ABRÃO, 2015).

The structure of the complex set is represented by

S =
{
a+ jb | a, b ∈

{
−
√
M − 1,−

√
M + 3, . . . ,

√
M − 1

}}
For this modulation, the average symbol energy is given by:

Es =
2(M − 1)

3
(2.2)

Also, it will be adopted Gray coded symbols, where adjacent symbols differ

only one bit, which minimize the BER performance.

Furthermore, the channel model will be kept simple, however substantially

adequate to the proposed systems. Specifically it is used a MIMO channel under

Rayleigh fading and under the effect of spatial correlation between antennas. The

Rayleigh fading is modeled as two random variables (r.v.) that follows circular

complex Gaussian distribution, with zero-mean and unitary variance, i.e., hij ∼
CN{0, 1}, whose magnitude is represented by a Rayleigh r.v., while the phase

is represented by a uniform distributed r.v. (CHO et al., 2010). Furthermore, is

worth to note that the Rayleigh fading model is valid for environments that is

rich in scattering, i.e., highly urbanized environments or with great number of

obstacles. It means that the signal do not have a prevalence path, i.e., non-line-

of-sight (NLOS) channels (GOLDSMITH, 2005).

2.1.1 Correlated MIMO Rayleigh-Fading Channels

This section discusses the MIMO channel correlation among different antenna

structures. As we have already defined the channel basic characteristics, the next

step is to evaluate the correlation effect and how to model it. The space for the

accommodation of antennas elements in wireless systems is in many cases limi-

ted. Thus, the correlation of antennas appears as an aggravating fact in MIMO

systems, and especially in large-scale MIMO systems. As the correlation between

antennas increase, the channel between them gets more similar to each other
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and this is caused by decreasing the distance between antennas. Generally, the

channels start to present correlation when the distance between antennas is lower

then a half wave length (λ/2) (GOLDSMITH, 2005). With highly correlated chan-

nels, spatial diversity loss is expected and consequently, deterioration in system

performance and capacity.

. . .

y

xλ
2

nR

Figure 2.2: Uniform Linear Array
(ULA)

Figure 2.3: Example of an ULA
implementation. Photo Source:

(MANDEEP et al., 2010)

Commonly, the classical and simple configuration allowing us to analyze cor-

relation for MIMO systems is the one where the distribution is organized as an

uniform linear array(ULA) (ZELST; HAMMERSCHMIDT, 2002), Fig. 2.2, which

simplifies the antenna model while allows a very good approximation for the cor-

relation effect at MIMO systems with a low or moderate number of antennas.

On the other hand, when the number of antennas are considerably increased, i.e.

massive MIMO applications, another array structures are required in order to

accommodate the transmit antenna elements in a feasible way. Different array

possibilities and configurations have been proposed for the large MIMO channel;

as a consequence, different correlated Massive MIMO channel models have arisen.

One of the first proposed antenna array arrangement is the uniform planar

array (UPA), In Fig. 2.4, antenna elements are disposed in a two dimensional

array. Accordingly to (BALANIS, 2005), planar array structures supply additional

variables which can be used to control and shape the pattern array. Also, pro-

viding more versatility allowing more symmetrical patterns with lower side lobes

at the total radiated power pattern. Additionally, they can be used as a scan

mechanism for the main beam of the antenna towards any point in space.
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Figure 2.4: Uniform Planar Array
(UPA) Figure 2.5: Example of an UPA

implementation. Photo Source: (GAO et

al., 2011)

Another interesting antenna array structure is the MIMO cube, that is compo-

sed of a three dimension array (GETU; ANDERSEN, 2005); A cube is an attractive

structure for building multiple antennas with low mutual coupling between an-

tenna ports, because any two adjacent faces in a cube are perpendicular to each

other. In addition, any two opposite faces in a cube have the farthest separation

compared with other three dimensional structures with the same volume. An

antenna cube, therefore, can take advantage of spacial and polarization orthogo-

nality to implement a large number of antennas within a constrained volume.

In our work it will be considered two antenna array structures. The classic

and simple ULA configuration will be taken as reference, and the UPA array,

which can be identified as a promising candidate to compose the base station

(BS) antenna structure in massive MIMO scenarios, will be considered as well.

Those choices were made aiming to evaluate the UPA implementation impact

at the BS, because theoretically the planar array structure has the potential to

concentrate the downlink beamforming at the transmitter side. This characteris-

tic can be showed through the Array Factor (AF), which is the factor by which

the directivity function of an individual antenna must be multiplied to get the

directivity of the entire array.

According to the antenna theory, the array factor of an ULA of N elements

along the x-axis can be represented as (BALANIS, 2005):

AFula =
N∑
n=1

Ine
j(n−1)(kd sin θ cosφ) (2.3)
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where, sin θ cosφ is the directional cosine with respect to the x-axes, In is the

amplitude excitation factor of each element and d is antenna element spacing.

For simplification purposes, equation (2.3) can be written as:

AFula =
N∑
n=1

Ine
j(n−1)ψ (2.4)

where ψ = (kd sin θ cosφ) and k = 2π
λ

.

According to (BALANIS, 2005), the AF in (2.4) can be expressed in an alter-

nate, compact and closed form whose function and their distribution are more

recognized. This is accomplished by multiplying both sides of (2.4) by ejψ, then

we have:

(AFula)ejψ = ejψ + ej2ψ + ej3ψ + · · ·+ ej(N−1)ψ + ejNψ (2.5)

Subtracting (2.4) from (2.5) reduces to

(AFula)
(
ejψ − 1

)
=
(
−1 + ejNψ

)
(2.6)

which can also be written as

AFula =

[
ejNψ − 1

ejψ − 1

]
= ej[(N−1)/2]ψ

[
sin
(
N
2
ψ
)

sin
(

1
2
ψ
) ] (2.7)

and according to (BALANIS, 2005), if we take as reference point the physical center

of the array, the AF of (2.7) reduces to

AFula =

[
sin
(
N
2
ψ
)

sin
(

1
2
ψ
) ] (2.8)

In general lines, the array factor can be represented as a function of the number

of elements, their geometrical disposal, corresponding magnitude, relative phases

and element spacing. With those considerations, the AF should result in a simpler

form if each element have identical amplitude, phase, and spacing related each

other, which motivates a normalization in the AF expression, providing a fair

comparison for different arrangements.

Substituting ψ into (2.8) and considering In = 1 we have the normalized

version of AF for ULA, which is expressed as:

AFula(θ, φ) =
1

N

sin(N kd sin θ cosφ
2

)
kd sin θ cosφ

2

(2.9)

which represents the directivity pattern of the ULA with k = 2π
λ

.

Now if L = N
2

antenna elements are placed in the x-axes and in the y-axes,
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a rectangular/planar array will be formed. Assuming again that all elements are

equally spaced with intervals dx and dy in both axes, and all elements have the

same amplitude excitation Il, the UPA array factor can be represented as:

AFupa = Il

L∑
l=1

ej(l−1)(kdx sin θ cosφ)

L∑
l=1

ej(l−1)(kdy sin θ sinφ) (2.10)

the normalized UPA array factor can be obtained as:

AFupa(θ, φ) =

{
1

L

sin(Lkdx sin θ cosφ
2

)
kdx sin θ cosφ

2

}{
1

L

sin(Lkdy sin θ sinφ

2
)

kdy sin θ sinφ

2

}
, (2.11)

where k = 2π
λ

.

The gain inside the array factor of a 5×5 UPA and 25 elements ULA has been

plotted in Figure 2.6 aiming to identify their beam pattern and normalized power

distribution over the azimuth and elevation directions, which directly impact on

the array gain.

Further elaboration is depicted in Fig. 2.6, which is the case where the

element spacing is defined as d = 0.5 λ, and a frequency of 1GHz. The normalized

beam pattern in polar coordinates and a cross section in the U-plane, where the

normalized energy distribution is plotted as a function of the elevation angle

variations projected onto the Cartesian plane, is also described. This coordinates

projection over the Cartesian plane is known as UV mapping and it is commonly

used in antenna theory, image processing and also 3D drawing. The UV mapping

is a R3 to R2 projection which transform a 3D pattern on its 2D rectangular

projection.

The u − v coordinates can be easily derived from the φ and θ angles which

are respectively the azimuth and elevation angles in spherical coordinates. The

relationship between these two coordinates system is simply:

u = sin θ cosφ

v = sin θ sinφ
(2.12)

the values of u and v satisfy the inequalities:

−1 ≤ u≤ 1

−1 ≤ v ≤ 1

u2 + v2 ≤ 1

(2.13)

An wider explanation regarding UV mapping can be found in the Appendix A.1.

Fig. 2.6 a) and d) represent the 3D pattern in terms of normalized power for
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Figure 2.6: Array Factor for 0.5 λ element-spaced: [left] UPA of 5× 5
elements; [right]: ULA with 25 elements
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both UPA and ULA, respectively. It is simple to notice that the UPA structure

presents a wider beam-width at the main lobe which provides larger beam gains

that leads, at the BS, to lower transmit power and larger antenna coverage. On

the other hand, the ULA power distribution is more heterogeneous presenting

smaller beam-width and, a power concentration directly at the beam direction

which provide a smaller coverage area with the total power transmitted. Another

observed characteristic due to the UPA structure deployment, is that it provides

larger side lobes when compared to the ULA side lobes, which implies in more

transmit gain at the UPA side lobes benefiting the power distribution with this

array structure. In order to manipulate the antenna beam pattern, especially

the beam-width; there are two variables in the array structure that can modify

the pattern distribution. The first is the number of antenna elements, which

directly affects the beam-width, so that with increasing number of elements, the

main lobe beam-width tends to become concentrated and the side lobes will suffer

from higher attenuation. Another parameter impacting the beam pattern is the

antenna element spacing; by decreasing the space between elements the beam-

width become wider, providing higher normalized power along the array, directly

impacting in less attenuation at the transmitted signal.

To exemplify those previous concepts and manipulations, we presented two

modifications on the previous uniform arrays. Firstly, Figure 2.7 depicts the

normalized power distributions along the azimuth-elevation directions, as well as

u-v directions, relative to a larger array structure of 8 × 8 UPA and 64-element

ULA both with the same as the previous 0.5 λ element-spaced. Secondly, Figure

2.8 indicates the normalized power distribution for the same array dimension as

in Fig. 2.6, i.e., 5× 5 UPA and 25 elements ULA, but now with a small spacing

between antenna-elements, i.e., 0.25 λ element-spaced.

Thereby, the performance of MIMO systems equipped with both UPA and

ULA arrays can be analyzed in a comparative meanings, aiming to determinate

which is the best scenario to apply the planar array structure in comparison to the

classical ULA approach. The following sections provide mathematical expressions

which represent the spacial correlation function for both studied antenna array

structures, also providing a comparison between the simplified version and the

full geometrical correlation matrix for each structure.
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Figure 2.7: Array Factor for 0.5 λ element-spaced: [left]: 8× 8 UPA;
[right]: ULA with 64 elements
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Figure 2.8: Array Factor for 0.25 λ element-spaced: [left] 5× 5 UPA;
[right]: ULA 25 elements
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2.1.2 Uniform Linear Array

Several MIMO channel correlation models were proposed in the last deca-

des; one of the most important yet simple class of MIMO channel models is the

one that assume independence among the correlation between transmit antennas

(TX) and receive antennas (RX) (and vice versa). Hence, a spatially correlated

MIMO fading channel is decently modeled by flat Rayleigh distribution and the

correlation among antennas elements will be determined over the Kronecker’s

correlation model (ZELST; HAMMERSCHMIDT, 2002), as follows:

H =
√

RH,RxH
′√RH,Tx (2.14)

where H′(nR × nT ) is the uncorrelated MIMO channel which is represented with

independent, identically distributed (i.i.d.) complex Gaussian with zero-mean

and unitary variance, gij ∼ CN{0, 1}. The correlation matrices RH,Tx(nT ×
nT ) and RH,Rx(nR × nR) denote the spatial channel correlation held among the

transmitter and receiver side, respectively. Each element of those matrices are

represented, in terms of a normalized correlation index ρ, by:{
rH,Rx ij = ρ(i−j)2

rH,Tx ij = ρ(i−j)2
(2.15)

Note that matrix H′ in (2.14) is similar to matrix H. Hence, for the rest of

this work we assume that the Tx and Rx antenna elements are equidistant, with

identical number of antennas nT = nR = n and consequently the same correlation

matrix RH,Rx = RH,Tx = RH , that is represented as:

RH =



1 ρ ρ4 . . . ρ(n−1)2

ρ 1 ρ . . .
...

ρ4 ρ 1 . . . ρ4

...
...

...
. . . ρ

ρ(n−1)2 . . . ρ4 ρ 1


(2.16)

Also note that a fully uncorrelated channel means ρ = 0, while an entirely corre-

lated scenario results in ρ = 1.

2.1.3 Uniform Planar Array

Traditionally, the MIMO systems adopt ULA setup as the simplest and stan-

dard structure. But considering the used space limitation, the ULA setup is not

suitable for large-scale antenna arrays. Hence, for massive MIMO applications
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the necessity to adopt a two-dimensional array structure, such as UPA, is es-

sential. A correlation matrix for the UPA structure was proposed by (LEVIN;

LOYKA, 2010); In this paper a multidimensional array correlation structure is

constructed for the UPA, based on a Kronecker product of two ULA correlation

matrices. More specifically, considering a UPA constructed ]with isotropic an-

tenna elements lying on the XY plane with nx and ny antenna elements along x

and y coordinates, respectively, so that nr = nx · ny.

Moreover, we can assume an approximation in which the correlation between

elements along x coordinate does not depend on y and is given by matrix RH,x,

and the correlation along y coordinate does not depend on x and is given by matrix

RH,y. The following Kronecker-type approximation of the UPA correlation matrix

is proposed by (LEVIN; LOYKA, 2010):

RH,r = RH,x ⊗RH,y

RH,r =


rH,x 1,1RH,y . . . rH,x 1,nTRH,y

...
. . .

...

rH,x nR,1RH,y . . . rH,x nR,nTRH,y

 (2.17)

where ⊗ denotes the Kronecker product. The equation (2.17) indicates that the

UPA correlation matrix RH,r is the Kronecker product of two ULA correlation

matrices RH,x and RH,y, which are Toeplitz. Therefore, according to the authors,

even tough RH,r may not be a Toeplitz matrix, its approximation (2.17) has a

Toeplitz structure. According to (LI et al., 2013), this approximation model is

reasonably accurate, allowing the usage of the well-developed theory of Toeplitz

matrices for the analysis of multidimensional antenna arrays.

Remembering that Toeplitz matrix or diagonal-constant matrix, is a matrix

which each descending diagonal element from left to right is constant. For ins-

tance, a n× n Toeplitz matrix A is defined as (BAREISS, 1969):

Ai,j = Ai+1,j+1 = ai−j, (2.18)

where

A = [A]i,j =



a0 a−1 a−2 . . . . . . a−(n−1)

a1 a0 a−1
. . .

...

a2 a1
. . . . . . . . .

...
...

. . . . . . . . . a−1 a−2

...
. . . a1 a0 a−1

an−1 . . . . . . a2 a1 a0


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As a consequence, the impact of this structure is seen in a matrix equation

of the form:

Ax = b, (2.19)

which is called a Toeplitz system. If A is an n × n Toeplitz matrix, then the

system has only 2n− 1 degrees of freedom, rather than n2; therefore, it produces

an easier system to solve.

2.1.4 Geometrical Correlation Model

Another perspective to derive the correlation expression is made through the

geometric properties of the problem. In (YING et al., 2014) the UPA analytical

expression was derived based on a 3D channel model. The spacial correlation

function was derived in a downlink transmission, where the BS is equipped with

Nv vertical antenna elements spaced by d1 wavelengths, and Nh horizontal an-

tennas with d2 wavelength spacing separation, as sketched in Figure 2.9.

d1

d2

θ
φ

x

z

y

UPA

User

hi

Figure 2.9: 3D Channel model adopted to derive the spacial correlation
function. φ is the azimuth angle, and θ is the elevation angle.

The (a, b)-th antenna element denotes the antenna in the a-th row and the b-

th column of the UPA, so the channel from the (a, b)-th element in the transmitter

to the receiver is associated with the b + Nh(a − 1)-th element of hi, which is

the channel vector related to the i-th fading block. As modeled by (ZHAO et

al., 2016), the spacial correlation matrix Rh for the UPA is composed by the
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correlation element between the (a, b)-th and (p, q)-th antennas, given as:

[Rh](a,b),(p,q) =
D1√
D5

e
−D7+(D2(sinφ)σ)

2

2D5 e
j
D2D6
D5 (2.20)

with the variables defined by:

D1 = ej
2πd1
λ

(p−a) cos θe−
1
2

(ξ
2πd1
λ

)2(p−a)2 sin2 θ,

D2 =
2πd2

λ
(q − b) sin θ,

D3 = ξ
2πd2

λ
(q − b) cos θ,

D4 =
1

2
(ξ

2π

λ
)2d1d2(p− a)(q − b) sin(2θ),

D5 = (D3)2((sinφ)σ)2 + 1,

D6 =D4((sinφ)σ)2 + cosφ,

D7 = (D3)2 cos2 φ− (D4)2((sinφ)σ)2 − 2D4 cosφ,

(2.21)

where λ is the carrier wavelength, φ is the azimuth angle-of-departure (AoD), θ

is the elevation AoD, while σ is the standard deviation of horizontal AoD, and ξ

is the standard deviation of vertical AoD. Finally, Rh is a nT × nT matrix and

[Rh](a,b),(p,q) is the element at the b+Nv(a− 1)-th row and the q +Nh(p− 1)-th

column.

Considering the above analytical expressions, it is clear that term D1 is only

associated with the elevation angle, containing only (p − a) terms, while D2, D3

and D5 are azimuth related containing only the (q − b) terms. Variables D4, D6

and D7 have the cross term (p − a)(q − b), containing both elevation and azi-

muth correlations. However, D6 and D7 are functions of D4. As proposed by

(YING et al., 2014), if term D4 could be neglected, i.e, D4 = 0, the correlation

term [Rh](a,b),(p,q) can be written as a simple product of elevation and azimuth

correlations. Therefore, if D4 = 0, the correlation matrix is separable:

Rh = Raz ⊗Rel, (2.22)

where the elements of elevation correlation matrix are expressed as:

[Rel](a,b) = ej
2πd1
λ

(p−a) cos θe−
1
2

(ξ
2πd1
λ

)2(p−a)2 sin2 θ (2.23)

and the correlation elements in the azimuth direction are:

[Raz](p,q) =
1√
D5

e
−D

2
3 cos2 φ

2D5 e
j
D2 cosφ
D5 e

− (D2(sinφ)σ)
2

D5 (2.24)

It is demonstrated by (YING et al., 2014) that the Kronecker correlation model
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has very similar eigenvalues distribution as the correlation matrix, and thus is a

good approximation for the original UPA correlation matrix.

The equation that express the ULA spacial correlation function is derived at

(BUEHRER, 2002), and is defined as:

[Rula](i,j) = ej
2πd
λ

(i−j) sin θe−
1
2

(ξ 2πd
λ

)2(i−j)2 cos2 θ (2.25)

where d is the distance between antenna elements. This expression is similar

to the elevation correlation, [Rel](a,b), in the UPA structure. From the previous

expressions it is easy to conclude that the ULA and UPA models provided in

subsection 2.1.2 and 2.1.3, respectively, are the simplified expressions to the above

geometrical models.

As we have derived the correlated channel expressions for both antenna array

structures, now we will introduce several MIMO detectors that will be deployed

to detect the transmitted symbols from the BS to the mobile terminal (MT)

(downlink); hence, the BS antenna correlation effect plays an important role on

the system capacity/reliability reduction.

2.2 MIMO Detection Techniques

The present section recall the commonly approaches for MIMO detectors

techniques, going through the maximum-likelihood (ML), sphere decoder (SD),

zero-forcing (ZF) and minimum mean squared error (MMSE). Also, it will be

provided a succinct discussion over the application of two techniques applicable

to the MIMO detection context, i.e., the sucessive interference cancellation (SIC)

and lattice reduction (LR) The knowledge of each detector procedure is very

important, in order to evaluate complexity and BER performance analysis.

2.2.1 Maximum Likelihood (ML)

The maximum-likelihood detector perform an exhaustive search over the

whole set of possibles symbols s ∈ SnT , of size MnT , in order to decide in fa-

vor of the one that minimizes the Euclidean distance, and therefore the lowest

error, between the received signal x and the reconstructed signal Hs:

ŝ = argmin
s∈SnT

‖x−Hs‖2 . (2.26)
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It is well known that the ML detector ensures the lowest BER performance in all

the spectrum of MIMO detectors, but the search complexity grows exponentially

according to the number of antennas and the number of symbols. If we consider

a M -ary modulation with nT transmit antennas, each one transmitting a diffe-

rent symbol in a distinct time-slot system, the order of combinations is given

by MnT This, way it becomes impractical in cases where the constellation order

and number of antennas are considerably increased; for example, if M = 16 and

nT = 8, the number of candidates to be evaluated becomes incredibly large, more

specifically, over ≈ 4 billion of candidate-symbols.

2.2.2 Sphere Decoder (SD)

Pursuing a reduction in the ML complexity, a similar approach has been

proposed, namely the sphere-decoder detector, that searches only the candidates

bounded in the hypersphere of radius d, causing it performance to be highly

related to the SNR:

d2 < ‖x−Hs‖2 (2.27)

If the search radius were too high, the SD complexity get close to the ML one. In

contrast, if the search radius is set too small, no candidate will be chosen upon

hypersphere. Moreover, in order to obtain candidate-solution points to perform

the sphere detection is necessary rewrite the eq.(2.1) evaluating the QR decom-

position at the channel matrix, such that H = QR. The QR decomposition will

ensure an orthogonal matrix Q, where I = QHQ, and an upper triangular matrix

R, then for detection purposes both matrices will have convenient properties.

The procedure is performed as follows:

y = QHx = QHQRs + QHn = Rs + n′. (2.28)

Since the matrix Q is orthogonal, the statistical properties of the additive

noise, n
′
, remains unaltered and no noise increment is foreseen. Moreover, as

R is an upper triangular matrix it enables noise estimation for each antenna

independently. Hence, the points inside the hyper-sphere can be determined

layer-by-layer, starting from the last row of R, by evaluating:

d2 < ‖y −Rs‖2 (2.29)
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Considering R =
[
rT1 rT2 rT3 . . . rTnT

]
, the noise norm is given by:

‖n′‖2
= ‖y −Rs‖2 =

nT∑
k=1

|yk − rks|2 , k = 1, 2, . . . , nT . (2.30)

In fact, eq. (2.30) shows that the noise norm is the summation of each layers

noise independently. This way, the noise norm can be updated as the symbols

are tested in each layer, which avoids the evaluation of the estimated noise for

every symbol combination.

A beneficial feature that emerges from the structure of the detection problem

in (2.29) is that, due to the upper triangular properties of the R matrix, the

tree search algorithm scan the symbol vector backwards, starting from the last

antenna symbol to the first one, testing all candidates symbols recursively and

independently, contrarily the ML. As this layer-by-layer procedure follows the

radius restriction defined in (2.30), by finishing the SD detection, the most likely

symbol-vector bounded by the hypersphere of radius d is the solution.

2.2.3 Zero-Forcing (ZF)

The Zero-Forcing detector, is a simple linear MIMO receiver, with low compu-

tational complexity. It is designed to suppress channel interference by multiplying

the signal received by the Moore-Penrose pseudo-inverse of the channel matrix:

H† =
(
HHH

)−1
HH . (2.31)

With that, the estimated signal from the detector can be determined by:

ŝ = H†x = s + H†n (2.32)

Considering a scenario without noise, the ZF detector has a identical ML perfor-

mance, due to all channel interference suppression. Otherwise, in noise scenarios,

ZF leads to noise enhancement. That problem inhibits the performance of the

ZF algorithm due to ill-conditioned H matrices, i.e near to linearly dependent co-

lumns condition, which after the matrix inversion in (2.32) leads to enhancements

in the thermal noise variance in ŝ when compared to y (CIRKIC, 2014).

2.2.4 Minimum Mean Squared Error (MMSE)

The MMSE detector can be seen as a particularly useful extension of the ZF

detection, which by taking the noise and signal statistics into account the detector
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is able to improve the overall MIMO detection performance. The procedural

difference to MMSE is that, instead of the pseudo-inverse, MMSE uses:

H† =
(
HHH + σ2

nInT
)−1

HH . (2.33)

And the solution of the MMSE detector is:

ŝ =
(
HHH + σ2

nInT
)−1

HHx. (2.34)

In another perspective, the MMSE detection can be fulfilled as:

ŝ = H†x = s + H†n (2.35)

It is easy to note that the equation above has the same structure of (2.32), but

the vector signal and the received vector are extended and respectively given by:

H =

[
H

σnInT

]
, x =

[
x

0nT×1

]
(2.36)

The extended matrix model is more complex than the approach given in (2.34),

but this model is required on successive interference cancellation (SIC) and can be

used on lattice-reduction in order to achieve performance improvements (WUBBEN

et al., 2004).

2.2.5 Successive Interference Cancellation (SIC)

The SIC detection technique can be performed by evaluating the QR decom-

position of the matrix H, which was addressed in section 2.2.2. An important

observation is due to the fact that for ZF detectors, the QR decomposition should

be executed on H, while for MMSE cases it is applied on the matrix H. As we

already know, the MIMO detection aided QR can be performed as follows:

ŝ = QHx = Rs + QHn. (2.37)

Since Q is an orthogonal matrix, when multiplied by the noise term, QHn, the

statistical properties of the additive noise remains unaltered. As matrix R has

an upper triangular structure, the n-th element of ŝ is completely free of inter-

antenna interference, and can be used to correctly estimate the received signal

after the addition of an appropriate scale of f.rac1rii, where, i = nT (WUBBEN et
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al., 2003). Hence, the linear system can be solved upwards by:

ŝ =


xi
rii
, i = nT

1

rii

(
xi −

nT∑
k=i+1

rikŝk

)
, i = nT − 1, . . . , 3, 2, 1

(2.38)

It is important to note that each symbol must pass to the slicer before following

to the interference cancellation and this step is applied at each symbol detection.

The slicing is extremely important in order to provide a proper interference can-

cellation and attain fully detector performance. Hence, if we assume that the

estimated symbol in a determined layer is correct, the furthest symbols can be

detected as if there were no previous layers, in a simple equivalent system. Howe-

ver, if an error occur on the first layers, it will propagate until the end of the

algorithm, resulting in performance deterioration.

2.2.6 Ordered Successive Interference Cancellation (OSIC)

Improvements related to the BER performance of SIC can be attained through

a suitable ordering scheme (WUBBEN et al., 2003), preventing error propagation

during interference cancellation computation. The ordering criteria has it’s focus

on minimizing the columns norm of Q, which cause the detection process to start

from the highest normalized power symbol to the weakest one.

The sorted decomposition can be expressed as:

HΠ = QR (2.39)

where Π is a permutation matrix that allows symbols reordering after executing

the SIC detection. It is important to notice that the detection proceeds as a

conventional SIC, is represented in (2.38). The only difference lay on the final

step, where, by the end of the detection scheme, the reordering step is followed

by multiplying the detected symbols vector with the permutation matrix.

The sorted QR decomposition (SQRD) is formalized at the pseudocode in

Algorithm 2.1. The main difference between this algorithm and the conventional

QR decomposition, lay at the lines 2 and 3 of the algorithm 2.1. Accordingly to

(KOBAYASHI; ABRÃO, 2016), if these lines are ignored, the algorithm will perform

a traditional QR decomposition with the Gram-Schmidt approach. Also, these

lines do not carry out high complexity operation, causing the ordering complexity

to be essentially negligible. For the rest of this work, this decomposition plus the

detection scheme will be referred as ordered successive interference cancellation
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(OSIC).

Algorithm 2.1 Sorted QR decomposition (KOBAYASHI; ABRÃO, 2016)

Input: Q = H, R = 0, Π = InT
Output: Q,R

1: for i = 1 to nT do
2: k = argmin

j=i to nT

‖qj‖2

3: Exchange columns i and k in Q, R and Π
4: rii = |qi|
5: qi = qi/rii
6: for j = i+ 1 : nT do
7: rij = qHi qj
8: qj = qj − rijqi
9: end for

10: end for

Recently, Kobayashi e Abrão (2016) have proved that the sorted QR decom-

position based on the Gram-Schimid method is unable to operate satisfactorily

at high SNR regime. It was also showed that SQRD algorithm based on Gram-

Schimidt’s was incapable to promote the orthonormalization of matrix channel

H when the channel is highly correlated, which can make the Q matrix do not

achieve the orthogonality and failing the OSIC requirements. Hence, the authors

proposed a change in the norm update in the classic algorithm and numerically

prove the stabilization of the OSIC in high SNR regime. Finally, the Algorithm

2.1 is the modified version that can achieve better BER performance in the high

SNR regime, while the same performance of the classic algorithm was held in low

and medium SNR regions.

2.2.7 Lattice Reduction (LR) aided MIMO Detector

As already mentioned, if the channel matrix has a strongly spacial correla-

tion characteristic or even a strong line-of-sight (LOS) component, the channel

matrix become ill conditioned; which disrupts the detection process and mainly

deteriorates the MIMO system performance. An ill conditioned matrix causes a

narrowing on the symbol decision regions, which makes the detection more vul-

nerable to even the smallest amount of noise. Hence, to circumvent this problem,

we aim to turn the channel matrix as near-orthogonal as possible, looking for

improve the MIMO detection process with a manageable complexity increase.

The LR can be efficiently carried out through the LLL algorithm, which

was proposed by Lenstra-Lenstra-Lovaz in (LENSTRA; LENSTRA; LOVÁSZ, 1982).

However, for this entire work, is recommended the usage of the Algorithm 2.2 to
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ensure the complex LR, which is known to be more robust for MIMO detection,

furthermore presents less computational complexity (MA; ZHANG, 2008).

Algorithm 2.2 The Complex LLL Algorithm (MA; ZHANG, 2008) (Using MA-
TLAB Notation)

Input: H
Output: Q̃, R̃,T

1: δ = 0.75
2: m = columns number of H
3: T = Im
4:

[
Q̃, R̃

]
= QR(H)

5: k = 2
6: while k ≤ m do
7: for n = k − 1 to 1 do

8: u =

⌊
R̃ (n, k)

R̃ (n, n)

⌉
9: if u 6= 0 then

10: R̃ (1 : n, k) = R̃ (1 : n, k)− uR̃ (1 : n, n)
11: T (:, k) = T (:, k)− uT (:, n)
12: end if
13: end for
14: Swap the (k − 1)th and kth columns in R̃ and T

15: if δ
∣∣∣R̃ (k − 1, k − 1)

∣∣∣2 > ∣∣∣R̃ (k, k)
∣∣∣2 +

∣∣∣R̃ (k − 1, k)
∣∣∣2 then

16: α = R̃(k−1,k−1)

‖R̃(k−1:k,k−1)‖
2

17: β = R̃(k,k−1)

‖R̃(k−1:k,k−1)‖
2

18: Θ =

[
α? β
−β α

]
19: R̃ (k − 1 : k, k − 1 : m) = ΘR̃ (k − 1 : k, k − 1 : m)

20: Q̃ (:, k − 1 : k) = Q̃ (:, k − 1 : k) ΘH

21: k = max(k − 1, 2);
22: else
23: k = k + 1
24: end if
25: end while

Basically, for detection purposes, the LLL algorithm decomposes the MIMO

channel into a new base in a reduced domain:

H̃ = HT, (2.40)

where H̃ is the reduced basis, offering improved properties regarding near-orthogonality

when compared with the former H, while T is a unimodular matrix with two pro-

perties: det(|T|) = ±1, and T ∈ {ZnR×nT + jZnR×nT }.

The new matrix H̃ has better numerical conditioning properties, so the deci-
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sion boundaries are enlarged and the noise amplification effect is reduced, which

allow performance gain in the signal detection. The idea behind the LR-aided

MIMO detection is to detect the symbols in the LR domain, so it is desirable to

rewrite the MIMO transmit equation in the LR domain:

x = Hs + n

= (HT) (T−1s) + n

= H̃z + n

(2.41)

Applying the reworked system model, the detection scheme under LR do-

main can be performed by any linear MIMO detection technique, such as ZF

and MMSE, optionally combined with the SIC or OSIC techniques. However, is

extremely important to properly quantize the symbols in the reduced domain,

this is performed through:

ẑ =

⌊
z̃− β′T−111×nT

2

⌉
+ β′T−11nT×1 (2.42)

where b·e represents the round operator, 1nT×1 is an all ones column vector, z̃ is

the estimated symbols after a MIMO detection strategy and β′ is a constant con-

trolled by the modulation order (MILFORD; SANDELL, 2011). For transmissions

schemes that uses M-QAM modulation, we set β′ = (1 + i) and for binary phase

shift keying (BPSK) modulation we set β′ = 1.

2.2.8 LR aided Linear Equalization

When linear detectors are taking into account, the equalization in the LR

domain can be done in the exact same way as in sections 2.2.3 and 2.2.4, the

only difference occurs in the quantization. Thus, for the ZF aided LR case, the

solution is given as follows:

z̃ = H̃†x

= z + H̃†n.
(2.43)

On the other hand, for the MMSE it is recommended the usage of the extended

matrix due to its better performance. (WUBBEN et al., 2004). Thus, the LLL will

be executed over the extended channel matrix, i.e,

H̃ = HT. (2.44)

Then, the MMSE solution in the LR domain is given as:

z̃ = H̃
†
x (2.45)
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According to (WUBBEN et al., 2004, 2003), the noise term still corrupts the

symbols on the LR domain and a proper decision must be made at the LR domain

symbol. As the LR operations consists in scaling and shifting the lattice points,

it is necessary to include a re-scaling and re-shifting operations, that is given by

the LR quantization in eq (2.42).

Finally, the last step of the LR-assisted MIMO detection consists of converting

the estimated symbol vector of the LR domain to the original signal space:

ŝ = Tẑ. (2.46)

2.2.9 LR and OSIC aided Linear Equalization

To perform the LR and OSIC aided detection it is necessary to realize some

modifications in the procedure approach. Basically, it is necessary to change the

QR decomposition in the Algorithm 2.2 to the sorted QR version that is described

in Algorithm 2.1.

With that change, the equalization can be described in the LR domain as a

upper triangular linear system as follows:

y = Q̃Hy

= Q̃H
(
H̃z + n

)
= Q̃H

(
Q̃R̃Π−1z + n

)
= R̃Π−1z + n

(2.47)

From this point the SIC detection is proceeded, as described in section 2.2.5.

Finally, the symbols in the LR domain are quantized, re-ordenated and converted

to the original domain.

ŝ = ΠTẑ (2.48)

The procedure described above can be applied to the ZF and MMSE equa-

lization, is important to emphasize the usage of the extended channel matrix in

the MMSE case. Besides, the ordering scheme can be by-passed, resulting in

conventional QR decomposition which generates the LR and SIC aided linear

detection.
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2.3 Performance Analysis

Next, the simulated BER performance of the previously discussed MIMO

detectors have been compared. The system analysis is performed as a data trans-

mission from the BS, with nT antennas to a MT equipped with nR antennas, i.e,

the downlink scenario. In order to have a rightful comparison among different

MIMO transmission set-ups, even when particular modulation order and number

of antennas are applied, all performances will be examined under a normalized

SNR in terms of bit energy (Eb), as:

Eb
N0

=
SNR

log2M
,

whereM is the constellation order andN0 is noise power spectral density. Besides,

the transmit power constraint must be adopted, with power equally distributed

among the nT antennas.

Firstly, we consider an ULA distribution on the transmit and receive anten-

nas, which results in the spatial correlation modeled in Section 2.1.1. We have

considered three different scenarios of modulation order and number of antennas

as evaluation standard for the MIMO detectors performance that do not gene-

rate prohibitive computational effort for the SD detector. Those arrangements

are listed as follows (modulation; NT ×NR):

a) (64-QAM; 4× 4); b) (16-QAM; 8× 8); c) (4-QAM; 20× 20).

We also consider an UPA distribution for both transmit and receive anten-

nas. In this case, as the structure is considered to work within massive MIMO

systems, it was considered structures with high number of antennas. The studied

arrangement are listed bellow:

a) (16-QAM; 8× 8); b) (4-QAM; 64 × 64) (massive-MIMO);

Thus, three antenna correlation scenarios has been applied, specifically: ρ =

0, 0.5 and 0.9, which represents respectively no correlation, medium and strong

correlation among antenna elements. Finally, in order of simplicity we have con-

sidered perfect knowledge of the channel gains in the receiver side, which means,

the channel content H is available at the receiver, but unknown at the transmitter

side.

The Figure 2.10 illustrates the first analyzed arrangement for the BER per-

formance, which consists in 64-QAM modulation and 4× 4 antennas format. We

begin the analysis at low SNR regime, where all the analyzed MIMO detectors
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provide very similar performance. However, it is important to notice that the SD

and the LR based detector can achieve full diversity, which means, in high SNR

regime, where the SNR is negligible, there is a drop of 2nT in the BER for every

3 [dB] increase in the SNR. As the system is based on a small antenna array,

the LR-aided detectors have an excellent performance showing a narrow gap in

comparison with the SD, and also their BER curve remains parallel to the SD

one, which implies in same diversity order.

Both ZF and MMSE detectors have similar performances in high SNR regions,

this statement is verified by equations (2.32) and (2.34), where the difference is

that the noise statistics are considered at the MMSE equation. Furthermore,

by the application of interference cancellation, lattice-reduction techniques or

the combination of both techniques leads to a great improvement in the MIMO

detection performance, which is verified at Figure 2.10.
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Figure 2.10: BER for the first arrangement (64−QAM ; 4× 4)

Regarding the performance impact due to antenna correlation, is expedite

confirm that as the correlation index increase the BER performance degenerates.

At high correlation scenario, the non-LR-aided detectors require very high SNR to

operate in suitable BER levels. This SNR demand for highly correlated scenarios

directly impact in the energy efficiency, leading to undesirable rates. In fact,

exclusively SD and LR-based MIMO detectors enables a great transmission energy
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efficiency and full diversity under high antenna correlation, which results in great

BER performance, as seen in Figure 2.10(c).

Increasing the number of antennas, i.e. the (16-QAM; 8× 8) case, will make

the BER gap between the SD and the other MIMO detectors also to be increased,

which is noticed in Figure 2.11. With this arrangement, differences in BER

performance are evident; the most notable performance is achieved when the

MMSE detector is combined with both LR and OSIC techniques, which was the

closest to the optimal.
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Figure 2.11: BER for the second arrangement (16−QAM ; 8× 8)

It is important to notice that in large antenna arrays, such as Figure 2.12 with

nR = nT = 20 antennas, the BER performance behaves different in each detection

case. The first point is related to the ZF detector which becomes inefficient at low

and medium space correlation scenarios, requiring high SNR regime to achieve

reasonable BER performance. At high correlated scenarios, i.e ρ = 0.9, the

ZF detector completely fails in decoupling the inter-antenna interference, also

the MMSE detector loses diversity, while the LR-MMSE suffers from great BER

performance degradation, particularly in high SNR regime. Furthermore, despite

it extremely superior performance, under high spacial correlated channels the SD

MIMO detector has showed an extremely exceeding computational complexity

due to the vast number of branches that the SD algorithm needs to visit in order

to detect the symbols in this configuration.
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Figure 2.12: BER for the third arrangement (4−QAM20× 20)

2.3.1 Spatial UPA × ULA Correlated Channels

Figure 2.13 depicts the BER performance for a 16-QAM MIMO with nR =

nT = 8 with UPA antenna array (from Fig. 2.9) deployment and correlation

index ρ = 0.5. Note that with the UPA array geometry applied the correlation

effect becomes more severe due to the inner geometrical problem which is related

to the antenna elements position. Notice that in uncorrelated channel scenarios

the BER performance achieved for both ULA and UPA arrays will be the same

for any system configuration, due to the Toeplitz structure of the correlation

channel matrix. Otherwise, in correlated channel scenarios, performance losses

will be expected for both UPA and ULA arrays, but with higher losses in the UPA

structure, due to the cross-distances within antenna elements at both x and y-

axes of the Euclidean plane. Such arrangement leads to higher interference in the

received signal, leading to noise enhancement and consequently BER performance

losses.

Figure 2.14 depicts the BER performance with the same previous configura-

tions of modulation order and system size. The difference is that only the LR-

MMSE detector is considered, in order to evaluate the performance gap between

the system with different array structures. The detector choice was made based
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Figure 2.13: BER for the first UPA arrangement (16-QAM; 8× 8), with
medium (ρ = 0.5) and very high (ρ = 0.9) spatial correlation.

on the LR-MMSE capacity to maintain the diversity at high SNR regions, and

also because the characteristic of being able to deal with correlated channels while

keeping a great performance. It is expedite conclude that, at medium and high

correlation index there is a tiny performance gap between the ULA and UPA, in

the order of approximately 2dB, which is introduced due to the correlation ma-

trix condition. Specifically, as there is less interference coming from the neighbor

antennas in the ULA correlated channel, a slightly better BER performance is

observed.

Another interesting result depicted in 2.14 is the approximation between the

Kronecker and the geometrical correlation models. The BER comparison were

obtained for moderate correlation index, ρ = 0.5, which is straightforward cal-

culated under the Kronecker model and the Geometrical-based correlation mo-

del following the expressions (2.25) and (2.22), respectively, for ULA and UPA

antenna arrangements. The Rula were simulated using the distance between ele-

ments d = 0.5λ and the other variables are set to: θ = 3π/8, ξ = π/8. For the

UPA arrangement, the Rh were simulated using d1 = d2 = 0.5λ and the other

parameters were set to: θ = 3π/8, φ = π/3 ξ = π/8 and δ = π/6 which repre-

sents a slightly greater angular spread when compared to the one used in (YING

et al., 2014), because as larger the angular spread, the lower is the correlation

index. So as we choose a moderated correlated case as our reference, ρ = 0.5, an

enlargment of the angular spread is required to properly compare the correlated

model with the geometrical one based on the refereed authors.
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Figure 2.14: BER ×Eb/N0 for the LR-MMSE detector with (16-QAM; 8× 8)
arrangement, correlation ρ = 0.5 with ULA and UPA arrays deployed at both

Kronecker’s approximation and Geometrical Model.

2.3.1.1 UPA Correlated Channels under Large-Scale Configuration

The UPA structure is proposed when large antennas array structures are

deployed at the base station; following this perspective, Figure 2.15 depicts the

BER performance for a 4-QAM 64 × 64 antennas systems. In this arrangement

the SD detector performance is not depicted due to its impractical complexity

over high number of antennas. With correlation index ρ = 0.5, all detectors tend

to show greater degradation especially the LR-aided ones. This behavior can be

explained due to the high size on the channel matrix, which makes more difficult

to find a new orthogonal basis; as expected for high sized channel correlated

matrix, the MMSE-OSIC detector presents a very similar performance of its LR-

aided version. Furthermore, when the correlation index is incremented to a high

correlated scenario, ρ = 0.9, all detectors suffer large diversity losses, except for

the LR-MMSE-OSIC, which, despite the high-scale scenario, compared to other

detectors, is still able to achieve greater diversity under high SNR regime.

2.3.2 Array Gain Impact on the Performance

The last analysis in this section is related to the array factor (AF), or array

gain, which directly impacts the transmission gain, that eventually will impact

over the SNR. As seen in section 2.1.1 the array factor for both structures will vary

accordingly to the number of antennas and the spacing between them. It is also

verified in that section that UPA structures are able to provide much more gain
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Figure 2.15: BER for the second UPA arrangement (4-QAM 64;×64)

over the transmit direction regarding the uniform linear array. The impact of this

characteristic is completely related to the BER performance, because the greater

the normalized power loss, the worse will become the BER performance. In this

perspective, it is important to emphasize that all previous BER performance

results for ULA and UPA were conceived considering an array gain of 0dB, which

implies that the beam gain from the BS is directed to the MT in a point-to-

point MIMO link configuration. In terms of elevation and azimuth angles θ = 0◦

and φ = 0◦, and in this case, only the correlation effect will impact the BER

performance.

A comparative analysis on the array gain for both array structures were made

based on a 5×5 UPA and a 25 element ULA with 0.5λ element-spacing. The array

gain comparison is provided in Table 2.1. To do such analysis, it is necessary to

compare the UV response for both array structures. Figure 2.16 provide the UV

response for both array structures in the azimuth cut condition, which means

the azimuth angle is φ = 0◦, leaving only the normalized power response for

elevation, θ, variations. Remembering that the x-axes follows the orthogonal

projection given by equation (2.12), adopting φ = 0, θ = arcsin(u).

The array gain feature is directly related to the normalized power distribution,

and each array structure provide its own power order. Analyzing the results in

Table 2.1, it shows that a UPA structure provide greater gains, independently
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Table 2.1: UPA and ULA array gain over various elevation angles θ under
azimuth angle φ = 0◦ condition

Elevation angle ULA UPA
u θ [◦] Array Gain (dB) Array Gain (dB)

0 0 0 0
0.12 6.9 −13.41 −1.27
0.2 11.5 −17.8 −3.8
0.44 26 −24.05 −20.2
0.6 37 −26.12 −12.4
0.86 60 −30 −20
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Figure 2.16: a) 25 antennas element ULA and b) 5× 5 UPA with 0.5λ
element-spacing UV response under azimuth angle φ = 0◦ condition.

of the MT position. The only exception occurs when θ = 0◦, because the BS

will provide the same beam gain on the transmission for both ULA and UPA. In

a MIMO point-to-point case, where the correlation effect is considered in both

transmit and receiver side, the ULA structure will provide better performance in

cases where the antenna beam pattern is focused on the MT. As the array gain

directly impacts the SNR, and as consequence in the BER performance, cases

where the antenna beam pattern is not focused directly on the MT, but in a

region that has lower gain coverage, the UPA will provide better performances

due to its higher gain lobe, especially under slightly deviations.

2.4 Complexity Analysis

The complexity analysis of MIMO detectors is of great importance, since

all MT’s should operate under strong signal processing and energy consumption

limitations. With the combined analysis of BER performance and complexity it

is possible to attain the best trade-off among the available detectors that comply

with the system requirements.
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With this objective in mind, this section presents a complexity comparison of

those sub-optimum MIMO detectors. The complexity of each MIMO detector was

measured in terms of flops (floating point operations), counting the total number

of flops needed to perform the detection of a single transmitted symbol vector.

For simplicity we have considered the flop counting for complex operations, spe-

cifically, one flops was considered for summations and three flops for complex

product (WUBBEN et al., 2003). Furthermore, the flop counting for matrix ope-

rations were based on (GOLUB; LOAN, 1996), with the necessary modifications.

Also, the complexity on the sorted QR decomposition were found in (WUBBEN et

al., 2003), as well the complexity for the SD were based on the study carried out

in (JALDEN; OTTERSTEN, 2005).

Through these methods, Table 2.2 presents the complexity in terms of num-

ber of flops for each used matrix operations, including matrix multiplying and

inversion, approximated LLL complexity and the QR decomposition, which are

procedures deployed in several MIMO detectors, specially those detectors treated

herein, where, n = nR = nT and M are the number of antennas and the M-QAM

order of modulation, respectively.

Table 2.2: Number of flops for each operation/procedure

Operation Number of flops
Cn×n = An×n ×Bn×n 2n3

yn×p = An×n × xn×p 2n2p
Cn×n = An×n + Bn×n n2

flll (n, ρ) (KOBAYASHI; CIRIACO; ABRÃO, 2015) ≈ (aebρ + c)n3

SQRD (WUBBEN et al., 2003) 16n3/3 + 7n2/3 + 25n/6
Cn×n = A−1

n×n 2n3/3

When it comes to complexity, despite of its good BER performance, the LR

aided detectors may present a growing complexity in certain scenarios. Through

the simulations, it was observed that the complexity of the LLL algorithm does

not only depend on the matrix size, but also on the correlation index. Naturally

the dependence between complexity and matrix size is straightforward due to the

number of operations evaluated. On the other hand, the increase of the correlation

index leads to a quasi-singular matrix, which makes it difficult for LLL procedure

to find an orthogonal basis, leading to an increase in computational complexity.

The exact LLL complexity cannot be easily evaluated due to all the variable

dependencies. However, it is known that a good approximation for the LLL

complexity can be evaluated as a O(n3 log n) order (LING; HOWGRAVE-GRAHAM,

2007). Aiming to provide a better expression that represent the LLL complexity,
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in (KOBAYASHI; CIRIACO; ABRÃO, 2015) a numerical experiment was conducted

to determine, through the better surface fitting, the LLL complexity dependency

w.r.t. the antenna correlation index and array dimension. With such experiment

the most similar surface fitting the LLL complexity, were given by:

flll (n, ρ) ≈
(
aebρ + c

)
n3 (2.49)

with a = 5.018× 10−4, b = 13.48 and c = 8.396. Finally, for the LR-aided MIMO

detectors, the necessary flop counting approximation for the LLL procedure given

in (2.49) was included in the total complexity calculation.

A complexity evaluation of the previous analyzed MIMO detectors and the

various combinations possibilities have been made. Table 2.3 summarizes the

overall complexity for the most relevant combinations of sub-optimum MIMO

detectors covered in this work. Notice that the ML complexity grows expo-

nentially and it becomes prohibitive when the product number of antennas by

modulation order (n ·M) increases, which is the case of any practical MIMO case

of interest (including small-medium n ·M values) (KOBAYASHI; CIRIACO; ABRÃO,

2015). Moreover, the SD complexity is not trivial to obtain; as demonstrated in

(JALDEN; OTTERSTEN, 2005) the SD complexity always present an exponential

asymptotic behavior in low SNR and/or large n ·M scenarios. This occurs be-

cause the algorithm needs to ensure certain probability to find a point inside the

sphere, then if the problem size and/or noise power increase, the hyper-sphere

radius grows and consequently the complexity.

Table 2.3: MIMO Detectors Complexity

MIMO Detector Total Complexity

ZF (VALENTE; MARINELLO; ABRÃO, 2014) 14n3/3 + 2n2

MMSE (VALENTE; MARINELLO; ABRÃO, 2014) 26n3/3 + 4n2

MMSE-OSIC 16n3/3 + 13n2/3 + 25n/6
LR-ZF 20n3/3 + 10n2 + 4n+ flll (n, ρ)
LR-MMSE 32n3 + 14n2 + 3n+ flll (n, ρ)
LR-MMSE-OSIC 22n2/3 + 13n2/3 + 25n/6 + flll (n, ρ)
SD 4n3 + 7n2 + n/2 + (2n+ 2)M

γn−1
M−1 ,

Ref.(JALDEN; OTTERSTEN, 2005) where γ = 1/2
[
c2(M2−1)

6N0
+ 1
]−1

and c2 = E
[
‖hi‖2], ∀i ∈ [1, n]

ML (KOBAYASHI; CIRIACO; ABRÃO, 2015) Mn(4n2 + 2n)

Regarding the ZF and MMSE detectors, their computational effort directly

relates to Eq. (2.32) and (2.34) respectively, which can be calculated through a

matrix inversion, a matrix summation, and multiplications. The main difference

between their complexity is that the MMSE requires two multiplications instead

of one, and four multiplications, instead of two needed for the ZF algorithm. The

ZF and MMSE complexities comply with Ambrosio et al (VALENTE; MARINELLO;

ABRÃO, 2014).
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Figure 2.17: MIMO detector complexity Eb/N0 = 20[dB]

When it comes to the OSIC-aided detectors, the primary source of compu-

tational effort it is the SQRD algorithm, which offers a cubic complexity order
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(WUBBEN et al., 2003). When the SQRD procedure is combined with the SIC algo-

rithm, represented by Eq. (2.38), the result is an increment in the quadratic order,

due to the SIC computational method. The complexity for the MMSE-OSIC in

Table 2.3 is corroborated by that found in (KOBAYASHI; CIRIACO; ABRÃO, 2015)

and (VALENTE; MARINELLO; ABRÃO, 2014).

Considering the LR aided detectors, the same procedure holds, but now with

the addition of the LLL algorithm complexity. Following Algorithm 2.2, we notice

that the LR is composed by a QR decomposition and the LLL, so the LR-ZF

aided detector complexity can be determined from the equation, Eq. (2.43), in

combination with the LLL algorithm and the matrix manipulations covered in

section 2.2.7. Regarding the LR-MMSE the only difference is the usage of the

extended matrix, which increases the computational effort by doubling the size

of all operations. Finally, the LR-MMSE-OSIC is based on the addition of the

SQRD algorithm, the LLL, and the SIC procedure, which reduce the complexity

by eliminating a series of matrix multiplications. The complexity evaluation of

the LR aided detectors relies upon (KOBAYASHI; CIRIACO; ABRÃO, 2015).

Figure 2.17 depicts the computational complexity for the various MIMO de-

tectors studied in this chapter, divided in terms of flops as a function of:

a) normalized correlation index × number of antennas;

b) M-QAM order × number of antennas.

From Table 2.3 and Figure 2.17, one can notice that the OSIC detectors are ca-

pable to offer much better complexity-performance tradeoffs when compared to

the versions with the pseudo-inverse. This is caused by the fact that the SQRD

leaves an upper triangular systems which demands lower complexities then the

pseudo inverse. Also, ordered version is preferable over the simple SIC, since,

accordingly (WUBBEN et al., 2003), the first one requires 2n2 − 2n flops in the

overall complexity, while providing considerable performance improvements.

Moreover, Figure 2.17.a) shows that the LR-aided detectors presents a re-

asonable complexity under low to medium correlation index, besides it keeps

full diversity for those scenarios, which makes these class of sub-optimal MIMO

detectors one of the most promising in the context of this work. Finally, the

exponential complexity on ML makes it prohibitive for any practical MIMO case

of interest (including small-medium n ·M product), while the SD detector can

result in great complexity saving only for cases where the systems is under high

SNR regime with low number of antennas and modulation order, otherwise it

results in increasingly high computational complexity burden, mainly combining

low SNR regime with high correlated channels and n ·M products.
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2.5 Conclusions

The initial MIMO detection performance analyses carried out in this chap-

ter were based on the independent identically distributed and perfect estimated

channels; this opened the possibility to analyze the performance × complexity

trade-off of such MIMO detectors operating under more realistic correlated chan-

nels.

Lattice reduction technique has been proved to provide great BER perfor-

mance improvements of linear sub-optimum MIMO detectors. The analysis of

MIMO detectors under correlated channels indicates notable advantage in terms

of reduction in BER degradation for the LR-aided MIMO detector due to the

ability to deal with the near orthogonality of the channel matrix H, besides it

achieves full diversity. The LR-MMSE-OSIC MIMO detector presented the smal-

ler degradation in terms of BER performance, even under high correlated MIMO

channels. Linear detectors aided by the combination of both LR and OSIC te-

chniques can provide a near optimum performance in some cases; however the

LR aided detectors tend to present increasing complexity when high correlated

scenarios are applied, resulting in lack of orthonormalization that the LLL al-

gorithm present when a near singular matrix is given as an input. Therefore,

the LR-MMSE-OSIC have achieved the best performance-complexity trade-off

among the presented detectors.

When it comes to array structure and correlation effect, the ULA will always

perform better when the antenna beam gain is focused on the MT, otherwise the

UPA structure will provide greater BER performances, despite the correlation,

due to its great inherent transmit power distribution pattern.
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3 Semidefinite Relaxation for
Large Scale MIMO
Detection

This chapter provides an analysis of the MIMO detection under a non-linear

optimization perspective, aiming the study of near optimum performance de-

tectors. The analysis here provided is the comparison in terms of complexity-

performance trade-off of the Semidefinite Relaxation (SDR) strategy detector

with linear sub-optimum detectors. This comparison is provided in a single cell

point-to-point MIMO equipped with the same number of transmit and receive an-

tennas. The main contribution of the chapter is the SDR detection performance

analysis under high number of antennas in both base station and the receiver,

also providing an analysis of the most suitable technique to recovery the relaxed

solution when the number of antennas are consistently increased.

3.1 Introduction

From the previous chapter, it is known that, the optimal detection solution

in the sense of minimum joint probability of error for detecting all the symbols

simultaneously is solved by the ML detector, which is known as NP-hard (BAI;

CHOI; YU, 2014). It can be implemented by a brute force-search over all of the

possible transmitted vectors set, searching for the one that minimizes the Eucli-

dean distance from the received vector, or using more efficient search algorithms,

i.e, the sphere decoder (SD)(BAI; CHOI; YU, 2014; JALDEN, 2004). However, the

expected computational complexity of the ML receiver, even when SD is applied,

is unpractical for many channel scenarios and applications. Consequently, there

has been much interest in implementing sub-optimal or quasi-optimal MIMO de-

tection algorithms, such as the linear receivers, i.e, the zero-forcing (ZF) and the

minimum mean squared error (MMSE) MIMO detectors (BAI; CHOI; YU, 2014).

One of the most promising quasi-optimal MIMO detection strategies is the
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semi-definite relaxation (SDR), which provides a better BER performance than

the linear and decision-feedback MIMO receivers (JALDEN; MARTIN; OTTERSTEN,

2003; WIESEL; ELDAR; SHAMAI, 2005; MA; CHING; DING, 2004; JALDEN, 2004;

MA et al., 2002) while holds same order of complexity. The SDR attempts to

approximate the solution for the ML problem using a convex program that can

be efficiently solved in polynomial time. The usual approach of the SDR problem

is first to formulate the ML problem in a higher dimension and then relax the

non-convex constraints; such relaxation will result in a semi definite program

(SDP), for which there are efficient tools to obtain solutions in polynomial time

(CVX, 2012).

SDR was first proposed for signal detection problem on binary/quadratic

phase shift keying (BPSK/QPSK) constellations,(JALDEN; MARTIN; OTTERSTEN,

2003; MA; CHING; DING, 2004), in which near-ML optimal performances were

empirically observed. These results suggest that at high signal-to-noise ratios

(SNRs), there is a high probability that SDR will yield the true ML decision.

Another result that motivates the use of the SDR shows that many of the other

conventional detectors, such as the MMSE, are relaxations of the SDR and are,

therefore, inferior in performance ways (MA et al., 2002).

The success of SDR in demodulating BPSK signaling motivated its gene-

ralization to higher constellations, e.g., the generalization to M -ary quadrature

amplitude modulation (M -QAM) signaling was intensively studied in order to

conceive high data rate systems. An SDR detector scheme for high-order 16-

QAM modulation was proposed in (WIESEL; ELDAR; SHAMAI, 2005), while an

approximation of this detector was developed in (SIDIROPOULOS; LUO, 2006), ai-

ming to achieve a high order 64-QAM constellation signaling. Moreover, in (MA

et al., 2002; MAO; WANG; WANG, 2007) the SDR detection problem is generalized

considering 4q-QAM (q ≥ 1) modulation orders. In (RAPOPORT et al., 2012) a

large scale SDR-based detector is proposed for fast signal detection. The SDR

problem is further reduced to the sequential linear programming by adding new

form of cutting planes and column generation method. BER performance is com-

pared with linear ZF and MMSE MIMO detectors, as well as the ML optimal

detectors for 16 × 16 and 28 × 28 antennas. In (TRAN; HANIF; JUNTTI, 2014),

authors suggest that the conventional SDR detector in a multi-casting problem,

where the transmitter is equipped with a massive antenna array, the complexity of

solving semi-definite problem (SDP) directly obtained can be prohibitively high.

Authors devise the SDP in a dual domain, producing a more computationally ef-

ficient solution. Also, they proposed an iterative second-order cone programming
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solution that is free from employing any randomization step.

This work analyzes the performance-complexity trade-off of the SDR-MIMO

detection algorithm, taking as reference both linear sub-optimal and ML optimal

solutions; low signaling orders are adopted in comparison with ML while high

order modulation schemes are adopted when comparing SDR-MIMO approaches

with linear ZF or MMSE MIMO detectors.

3.2 Problem Statement

Considering a standard MIMO channel, the received signal can be described

by:

y = Hs + n, (3.1)

where nT × 1 symbols s are transmitted simultaneously through a channel which

gain is represented by a nR × nT matrix H and the additive noise nR × 1 vector

samples n. Each element of the channel matrix H represents the channel gain

in the respective selected path; those gains are assumed known at the receiver

side and represented by a Rayleigh distribution. The nT × 1 vector y represents

the received signal samples in each symbol period, formed by the symbols after

passing through the channel. It is also known that the noise vector n, are samples

of additive noise represented as circularly-symmetric Gaussian distribution, n ∼
CN{0, σ2

nI}, with variance σ2
n.

For the subsequent analysis and without loss of generality we assume nR = nT .

The system model is fully defined by complex variables; however, since we focus

on the optimization procedures, for simplicity and computational convenience,

the complex variables are split into a double real-value structure. So, rewriting

the received MIMO signal in (3.1) with imaginary and real part separately (BAI;

CHOI; YU, 2014; KOBAYASHI; CIRIACO; ABRÃO, 2015):[
<{y}
= {y}

]
=

[
<{H} −={H}
= {H} < {H}

][
<{s}
= {s}

]
+

[
<{n}
= {n}

]
(3.2)

We consider a high order M-QAM modulation, where the symbols are denoted

by a complex number with real and imaginary part are limited to ±
(√

M − 1
)

.

The structure of the complex set can be represented by:

S =
{
a+ jb | a, b ∈

{
−
√
M − 1,−

√
M + 3, . . . ,

√
M − 1

}}
.
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For this modulation, the average symbol energy is given by:

Es =
2(M − 1)

3
(3.3)

3.2.1 Maximum Likelihood (ML)

The maximum-likelihood (ML) detector performs an exhaustive search over

the whole set of possible symbols si ∈ S, in order to decide in favor of the one

that minimizes the Euclidean distance between the received signal y and the

reconstructed signal Hs:

ŝ = arg min
s∈S
‖y −Hs‖2 . (3.4)

It is well known that the ML detector provides the lowest BER performance of

all MIMO detectors, but the search complexity grows exponentially according to

the number of antennas and the number of symbols, leading to a MnT symbol

set combinations.

3.3 Relaxed ML Criterion by Semidefinite Pro-

gramming

SDR is an efficient approximation tool for non-convex quadratically cons-

trained quadratic programming (QCQP) problems and it has been shown to

provide good approximation accuracy in the application of near-ML detection

problem with BPSK (JALDEN; MARTIN; OTTERSTEN, 2003) and QPSK (WIESEL;

ELDAR; SHAMAI, 2005; MA; CHING; DING, 2004) constellations. Like most relaxa-

tion methods, SDR consists of three steps: a) relax the feasible set of the original

problem in order to ease the solution of the relaxed problem; b) solve the relaxed

problem; c) convert the relaxation solution to an approximate solution of the

original problem.

The main idea behind the SDR approach applied to hard decision MIMO

detection is to first establish the finite constellation requirement as a low-rank

(in this case rank one) constraint on a matrix whose diagonals belong to a finite

constellation. After that, those two constrains are relaxed to a positive semi-

definite constraint, which makes the resulting problem convex and enables to use

semi-definite programming to solve it (CIRKIC, 2014). More specifically, we can
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rewrite the ML problem posed in (3.4) as follows:

‖y −Hs‖2 = sTHTHs− 2yTHs + ‖y‖2

= xTLx + ‖y‖2 ,
(3.5)

where L ,

[
HTH −HTy

−yTH 0

]

Thus the ŝ can equivalently be obtained through

ŝ = argmin
s∈S

sTHTHs− 2yTHs (3.6)

since ‖y‖2 does not depend on ŝ (JALDEN, 2004). The function of the above

problem can equivalently be written as

[
sT 1

] [HTH −HTy

−yTH 0

][
s

1

]
(3.7)

and thus by letting x =
[
ŝT 1

]T
the ML detection problem can be solved exa-

mining the equivalent problem in the second line of (3.5):

min
x∈RnT+1

xTLx

s.t. x2
i = 1 i = 1, . . . , 2nT + 1

(3.8)

where xi is the ith component of x.

Then, SDR utilizes xTLx = tr(xTLx) and X = xxT , which lets the MIMO

detection problem in (3.8) for high modulation order be equivalent to

min
X,x

tr(LX)

s.t. diag(X) = e

X (2nT + 1, 2nT + 1) = 1

X � 0; rank(X) = 1

(3.9)

where e is the vector of all ones and where X � 0 means that X is symmetric

and positive semi-definite.

We should observe that the optimization problem in (3.9) is not convex yet1

and it is equivalent to (3.4) in the sense that if the solution of the first is known,

the solution to the second can be easily computed and vice-versa. However,

the component that makes (3.9) hard is more explicit than the constrains in

(3.4). Accurately, the only difficult constraint in (3.9) is the rank constraint,

1Because of the rank constraint in X (JALDEN, 2004)
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rank(X) = 1, which is non-convex, the objective function and all the other

constraints are convex in X, thus we should drop the rank constraint in order to

obtain the relaxed version of the problem (3.4):

min
X

tr(LX)

s.t. diag(X) = e

X (2nT + 1, 2nT + 1) = 1; X � 0

(3.10)

The problem (3.10) is the SDR version for high modulation order of (3.4) and the

difference between them is that the constraints on X has been replaced by X � 0.

The problem in (3.10) is a semi-definite program and standard methods can be

used to solve it in polynomial time (VANDENBERGHE; BOYD, 1996). The SDR

problems can be handled very conveniently and effectively by readily available

(and free) software packages; e.g, by using the convex optimization toolbox CVX

(CVX, 2012), we can solve (3.10) in MATLAB with it’s SDP mode.

Moreover, in order to solve a high modulation order problem one constraint

must be modified and this modification is denominated as bound constraint SDR

(BC-SDR). In this work the method for high order modulation problem was based

on (SIDIROPOULOS; LUO, 2006). The convex optimization problem for high order

modulation cases is rewritten on it relaxed version as:

min
X

tr(LX)

s.t. ILI ≥ diag(X) ≥ SLI

X (2nT + 1, 2nT + 1) = 1; X � 0

(3.11)

where, IL = min log2(M)2; SL = max log2(M)2 and I is the 2nT + 1 dimensional

identity matrix.

In the backstage, most convex optimization toolboxes handle SDP with an

interior point algorithm. Hence, the SDR problem (3.10) can be solved with a

worst case complexity(LUO et al., 2010):

O
(

max {m,n}4 n
1
2 log

(
1

ε

))
(3.12)

where m is the number of constraints, n is the problem size and ε is a given

solution accuracy. From the point of view of the MIMO equalization problem,

the variables m and n are respectively represented by the number of transmit

(nT ) and receive (nR) antennas.

From (3.12), the SDR complexity scales slowly (logarithmically) with ε and

most applications do not require a very high solution precision; hence, simply



3.3 Relaxed ML Criterion by Semidefinite Programming 51

speaking, we can say that the SDR is a computationally efficient approximation

approach to QCQP problems, in the sense that its complexity is just polynomial

time. So, basically the SDR transforms a NP-hard combinatory problem (3.4)

into a polynomial time solvable problem (3.10) and (3.11).

Furthermore, with the relaxation of the rank constraint, a fundamental issue

that can be found while using SDR is how to convert a globally optimal solution

X∗ of (3.10) into a feasible solution x̃ to (3.4). If X∗ is already rank one, then

there is nothing to do, and we can write X∗ = x∗x∗T , and x∗ will be a feasible

and optimal solution of (3.4). On the other hand, if the rank of X∗ is larger than

one we must extract from it, in an efficient manner, a vector x̃ that is feasible for

(3.4) (LUO et al., 2010).

There are many heuristic ways to extract the rank one solution, however, even

though the extracted solution is feasible for (3.4), it is in general not an optimal

solution. Different way to extract the optimal solution from the feasible solution

include the rank one approximation and the Gaussian randomization. In this

work both rank one approximation and the Gaussian randomization techniques

have been deployed.

3.3.1 Rank One Approximation

The rank one approximation consists in the most simple technique to extract

a solution x∗ to the non-convex problem from the solution of the convex problem

formulated, X∗. With this procedure it is assumed that every solution of X∗ is

a rank one solution. Algorithm 3.1 describes the steps to perform the rank one

approximation strategy; in step 3, the operator slicer(·) is an approximation to

the nearest constellation value.

Algorithm 3.1 1-Rank Approximation SDR-MIMO Detection

Input: X∗

Output: ŝi
1: First we should take the eigen-decomposition of X∗

X∗ =
∑r

i=1 λiqiq
T
i

2: Then we select the higher eigenvalue
I = arg maxi λi

3: Take x∗ as the slicer on the eigenvector constellation associated with the
higher eigenvalue.

x∗ = slicer(qa)
4: The estimation of the transmitted symbol in real form is obtained in x∗,

except from the last position of the vector
ŝi = x∗i i = 1, . . . , 2nT
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3.3.2 Gaussian Randomization

The Gaussian randomization procedure is widely deployed; e.g., (LUO et al.,

2010) has demonstrated excellent near-ML results under high number of anten-

nas condition. Alternatively, in this work the Gaussian randomization process

based in (WIESEL; ELDAR; SHAMAI, 2005) findings has been used. Algorithm 3.2

describes such procedure.

Algorithm 3.2 Gaussian Randomization SDR-MIMO Detection

Input: X∗, Sg, L,
Output: ŝi

1: Cholesky Factorization at the SDR solution matrix:
X∗ = UTU

2: Let ui the i-th column of U
3: for i = to Sg do
4: Generate a random vector r with a uniform distributed over a unitary

sphere of (2nT + 1) dimension.
5: Let xg be the:

xgi = slicer

(
uTi r

uT2nT+1r

)
, i = 1, 2, . . . , 2nT + 1

6: Calculate the the vector k as:
ki = xg

TLxg, i = 1, 2, . . . , Sg
7: end for
8: xg = min(k)
9: ŝi = xg, i = 1, . . . , 2nT

3.4 Numerical Results

In this section the BER versus Eb/N0 performance analysis under perfect

channel estimation, different number of antennas and modulation order have

been considered. The performance and the complexity trade off is an important

parameter to be defined; hence, the computation complexity was analyzed for

each MIMO detector considered in this work. Furthermore, we have compared

the SDR detector under both estimation approaches with the LR-ZF strategy.

Specifically, on the SDR detection it was utilized the rank one approximation

(SDR Rank One) and the Gaussian randomization (SDR Rand) in order to extract

the feasible solution ŝ from the globally optimum X∗. Numerical simulations are

performed in uncoded spatial multiplexing MIMO systems employing 16-QAM

constellations for different antenna configurations, e.g., 8×8, 16×16, 64×64 and

128× 128 antennas. As demonstrated in the following, the SDR Rand approach

overcomes the SDR Rank One approximation for medium/high SNR regions and

low size problems. On the other hand, when large MIMO was deployed, an
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inversion on the BER performance behavior emerges: SDR Rank One MIMO

detector overcomes the SDR Rand MIMO detector performance because of its

low complexity.

3.4.1 BER Performance

Fig. 3.1 depicts the BER performance for the SDR MIMO detector equipped

with both rank approximation and gaussian randomization estimations in com-

parison with the LR aided linear detectors, namely LR-ZF and LR-MMSE. This

procedure was performed in a scenario with 16-QAM constellation, nT = nR = 8

antennas (Fig. 3.1.a) and nT = nR = 16 antennas (Fig. 3.1.b), under non-line-of-

sight (NLOS) Rayleigh propagation channels plus additive white Gaussian noise.
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Figure 3.1: BER performance for 16-QAM SDR and LR-aided linear MIMO
detectors equipped with a) 8× 8 antennas and b) 16× 16 antennas

Note that both SDR approaches result in better performance under low and

high SNR regions; moreover, asymptotically speaking both SDR approximations

(Rank One and Rand) tend to get close to each other but at the medium SNR re-

gions the SDR with randomization approach has 4dB gain over the performance

of the LR-ZF linear MIMO detector. Fig. 3.1.b depicts the BER performance for

nT = nR = 16 antennas under the same 16-QAM constellation order and NLOS
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Rayleigh channel. As the number of antennas grows the LR technique applied to

MIMO systems makes them more sensitive to noise, what makes the BER perfor-

mance be considerable in high SNR regions, where the additive noise is negligible.

When the SDR is analyzed a diversity gain was directly observed. Moreover, a

considerable performance gain is achieved in high SNR region, something ≈ 7dB

higher.

As a conclusion, the achieved performance of both approximations for the

SDR detector in MIMO Rayleigh channels improves progressively with the num-

ber of both transmit and receive antennas. Such progressive improvement of SDR

Rank One, depicted in Figs. 3.2.a and 3.2.b, reflects directly over the complexity

the detection strategy. Finally for the Rand approach, as the problem size grows,

the number of randomization samples, Sg, must be incremented for better BER

performance. Indeed, under lower size problems, the lowest value for Sg on the

SDR Rand algorithm have a better BER in comparison to the SDR Rank One

approach.
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Figure 3.2: BER performance for 16-QAM SDR and LR-aided linear MIMO
detectors equipped with a) 64× 64 antennas and b) 128× 128 antennas

3.4.2 Complexity

According to (GOLUB; LOAN, 1996), the algorithm complexity can be eva-

luated in terms of the total number of floating-point operations (flops), where
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one flop is defined as a unitary addition, subtraction, multiplication or division

between two floating point numbers. Using this methodology, the complexity of

MIMO detectors showed in Table 3.1 was determined, where n = nR = nT is the

number of receive and transmit antennas, respectively and M is the modulation

order in M -QAM constellation.

Table 3.1: MIMO Detectors Complexity

Detector Total Complexity
ML Mn(4n2 + 2n)
LR-ZF 20/3n3 + 10n2 + 4n+ fLLL (n, ρ)
LR-MMSE 32n3 + 14n2 + 3n+ fLLL (n, ρ)
SDR Rank One 16

3
n3 + 12n2 + 32

3
n+ 1

SDR Rand. 16
3
n3 + 12n2 + 38

3
n+ 2 + (8n2 + 26n+ 10).Sg

It was analyzed the complexity for the SDR by evaluating the number of real

operations for the rank approximation and the Gaussian randomization, where

Sg is the adopted number of generated symbols stored in vector k, that is used

to choose the nearest symbol from the original transmitted one. The compu-

tational complexity for the SDR detectors under both estimation techniques are

placed near the order of O (n3
t ), which determines a cubic complexity for the SDR

detectors.

It is important to emphasize that the order of constellation does not affect

the complexity of both SDR algorithms. This characteristic is achieved by the

limitations over the SDR constraints; in the literature it is called bound cons-

trained SDR (SIDIROPOULOS; LUO, 2006). The specific procedure to determine

the SDR detector complexity is detailed in (MUSSI; ABRAO, 2013) specifying the

procedure and the auxiliary packages to perform the analysis.

For the ML approach it is simple to verify in Table 3.1 that the ML-MIMO

detector is highly dependent on the constellation order (problem dimension) what

requires a huge number of operations which makes it not feasible even for a low

number of antennas. On the other hand, the LR-aided linear MIMO detectors

approach the function flll (nT ) is an approximation for the flop count on the LLL

algorithm presented at the lattice reduction procedure, this function turns out to

become more and more complex to solve as the problem when the problem size

gets higher which makes the BER for the LR-aided linear equalizer to shown a

worst performance in comparison with the SDR approach. Moreover, a surface

fitting for the flop count on LLL algorithm was suggested by (KOBAYASHI; CIRI-

ACO; ABRÃO, 2015) and described by flll (nT ) = (a+ c)n3
t , where a = 5.08×10−4

and c = 8.396. Remembering that this fitting is valid only for nR = nT arrays.



3.5 Conclusion 56

The number of complex operations for all those considered MIMO detectors

according to the number of antennas and modulation order is depicted in 3D-

graphic of Fig 3.3. The SDR Rand algorithm is highly dependent on Sg which

makes the complexity grows as higher as the number of samples. So as the num-

ber of antennas grow, the complexity grows proportionally leading to estimation

errors. On the other hand, the SDR Rank One approach is suitable for high sized

problems, leading to the lowest complexity and the best BER performance among

the evaluated detection techniques.
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Figure 3.3: Complexity of the SDR and LR-aided linear MIMO detectors
versus number of antennas and modulation order. For SDR Rand, Sg ranges

from 50 to 500.

3.5 Conclusion

Semi-definite relaxation (SDR) technique has been applied to improve the

MIMO detection performance in order to achieve near-ML performance on Ray-

leigh channels. The performance of SDR detectors and their respective computa-

tional complexity in term of number of operations under uncorrelated antennas

were analyzed. As demonstrated, the SDR-MIMO detectors outperform the li-

near techniques, specially when the number of antennas increases. The lattice

reduction aided MIMO detectors have an inherent advantage over the most sub-

optimal detectors, showing better BER performance over them, the SDR based
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detector outperform the LR based linear MIMO detectors, specially when the

number of antennas increases substantially.

The complexity of the SDR based detectors was reduced by a semi-definite re-

laxation, which offers similar performance when compared with the conventional

LR-aided linear MIMO detectors. As a consequence, the SDR approach presents

considerable performance gain with a similar complexity, resulting in a promising

solution for high order modulation MIMO systems equipped with a medium-high

number of antennas.
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4 Precoding and Beamforming
for Large Scale MU-MIMO
Downlink Channels

At the previous chapters, no channel state information (CSI) was assumed at

the transmitter side (CSIT), and also equal power distribution were considered for

all transmission antennas. In this chapter, assuming perfect channel knowledge at

the transmitter, we will be able to analyze the beamforming for the downlink in

a multi-user massive multiple-input multiple-output (MU-MIMO) channel with

two different power allocation schemes: an equal power (EP) allocation and the

water-filling (WF) strategy, which is the optimal solution in terms of maximizing

the capacity of the communication system.

In a point-to-point or single-user (SU) MIMO, studied in the previous chap-

ters, it was clearly demonstrated that the promised capacity and performance

gains of a SU-MIMO systems with increasingly number of antennas are unachie-

vable, mainly due to the antenna correlation. With a multi-user (MU) scenario

deployment, the inherent SU-MIMO transmission problem can be largely surpas-

sed with the MU diversity, i.e., by sharing the spacial dimension not only between

the antennas of a single user, but among multiple (non-cooperative) users (WAG-

NER et al., 2012). The channel for an MU-MIMO transmission is commonly refe-

reed to as the MIMO broadcast channel (BC) or MU downlink channel. Despite

being much more robust to channel correlations than the SU-MIMO, the down-

link MU-MIMO experiences inter-user interference (IUI) at the receiver which

can only be efficiently mitigated by appropriate processing at the transmitter,

with the channel awareness; hence, precoding design becomes essential in the IUI

mitigation.

Furthermore, in the next generation of communication systems (5G), due

to the increasing demand for higher data rates transmission and the exponen-

tial growth in the number of users, interference has turn into one of the major

limiting factors for performance and capacity of wireless cellular systems. In



4 Precoding and Beamforming for Large Scale MU-MIMO Downlink Channels 59

downlink transmission of an MU-MIMO scenario, interference between users is

a major source of system errors, and schemes that cancel it without the need a

major detection collaboration are of great interest. These methods are commonly

defined in the category of base station precoding and generally rely on the channel

state information (CSI) knowledge.

Beamforming is a widely known technique for interference reduction and di-

rected transmission of energy in the presence of noise and interference. In MIMO

systems, the beamforming technique exploits channel knowledge at the transmit-

ter side to maximize the SNR at the receiver by transmitting in the direction of

the eigenvector corresponding to the largest eigenvalue of the channel (MORADI;

DOOSTNEJAD; GULAK, 2011), while cancel the transmission in other directions.

Furthermore, beamforming can also be used in the downlink of multi-user system

aiming at maximizing the signal-to-interference-plus-noise (SINR) of a particular

user (BENGTSSON; OTTERSTEN, 1999).

From information theory perspective it is proved that the sum capacity of the

MIMO broadcast (spatial multiplexing mode) channel can be achieved through

the technique known as dirty-paper-coding (DPC) (COSTA, 1983). However, DPC

is a nonlinear precoding scheme and for most practical communication systems it

is not feasible due to its very high computational complexity. Due to this reason,

researches have focused on sub-optimal approaches. In contrast to the DPC, it

has been showed in (YANG; MARZETTA, 2013; WIESEL; ELDAR; SHAMAI, 2008)

that sub-optimal linear precoders, such as the matched filtering (MF) precoding,

also known as conjugate beamforming, and the zero-forcing beamforming (ZFBF)

can be applied to ensure much lower computational complexity and still providing

good performance in terms of achievable sum-rate in the massive MIMO context.

Specifically, the ZFBF is a sub-optimal linear precoding or transmit beam-

forming strategy that is able to cancel the IUI simply by pre-multiplying data

symbols with the inverse of the channel matrix. However, it is showed in (PEEL;

HOCHWALD; SWINDLEHURST, 2005) that the sum-capacity of the ZFBF does not

grow linearly with the number of users while channel inversion-based precoding

strategies can become a serious concern when the channel becomes ill-conditioned.

Hence, in order to handle this problem, a regularization parameter is introduced

in the channel inversion and by that the corresponding sum-capacity scales line-

arly the number of users, but under a slower rate that achieved by the optimal

DPC (PEEL; HOCHWALD; SWINDLEHURST, 2005). This beamforming technique

is called regularized channel inversion (RCI) and it does not cancel the inter-user

interference completely as the ZFBF, but also controls the amount of interference
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introduced to each user. Therefore, this regularization parameter should be op-

timally chosen to maximize some performance indicators, such as the SINR. The

optimal regularization parameter when the number of BS antennas is equal to the

number of users was derived in (PEEL; HOCHWALD; SWINDLEHURST, 2005), while

in (NGUYEN; EVANS, 2008) a generic case was derived by using a large system

analysis.

An alluring investigation about precoding techniques at single-cell MU-MIMO

systems downlink is carried out in (YANG; MARZETTA, 2013). The authors compa-

red the MF precoding and ZFBF with respect to spectral-efficiency and radiated

energy-efficiency in a single cell scenario. It is showed that, for high spectral-

efficiency and low energy-efficiency, ZFBF outperforms MF, while in the case at

low spectral-efficiency and high energy-efficiency the opposite is true. An equiva-

lent result for the uplink can be found in (NGO; LARSSON; MARZETTA, 2013); the

authors have demonstrated that in a low SNR ratio, the simple maximum ratio

combining (MRC) receiver outperforms the ZF receiver. This can be explained

by the fact that, at low power levels, the inter-user interference introduced by

the MRC receiver is occasionally less than the noise enhancement caused by the

ZF detector, hence, the simple MRC detector becomes a better alternative. This

result is analog for the downlink.

Another interesting analyses, which is the inspiration for this work, are pre-

sented by (COUILLET; DEBBAH, 2011) and (MUHARAR; EVANS, 2011). In these

works, a large system limit for the SINR was derived under a single-cell MU-

MIMO scenario, their goal is achieved by providing a deterministic expression

that summarizes the SINR for a user in the asymptotic limit. In (COUILLET;

DEBBAH, 2011), the main results are based on the large limit SINR derivation,

considering a uniform circular array at the BS. On the other hand, (MUHARAR;

EVANS, 2011) also provides a power allocation scheme under the large system li-

mit SINR for the RCI precoder, providing a water-filling based resource allocation

scheme.

Finally, in this Chapter we consider the linear sub-optimal ZFBF and RCI

precoding techniques. In order to compare their achievable sum rates, we will also

take advantage of a power allocation technique to maximize the sum rate capacity

in both precoding approaches. It will be deployed the water-filling strategy (KHA-

LIGHI et al., 2001) which is a power allocation technique that consists in increasing

the transmission power for the streamers that experience better channel condi-

tion in order to maximize the overall capacity, with the price of an unfair resource

(power) allocation for those users that experience worst channel conditions. Ba-
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sed on such assumptions, the objective of this Chapter consists in carrying out a

comparative analysis between the ZFBF and the RCI precoding in terms of sum-

rate capacity and BER performance, taking advantage of the water-filling power

allocation strategy for both precoders in order to maximize the overall capacity

of the channel, considering a 5G-like multi-user Massive-MIMO scenario.

The main contributions of this work is due to the aggregation of the user

grouping power allocation scheme, where all users belong to the same group

experience the same path-loss channel. Hence, the main objective is to determine

how the users distribution in the cell could impact on the overall capacity and

how the system can manipulate this information, in order to choose the best

group user at the available configuration that maximizes the sum-rate capacity.

We have also derived the large system limit SINR for the RCI precoder based on

the assumptions of (MUHARAR; EVANS, 2011) in order to enable such analysis.

4.1 System Model

In this section, we consider the downlink of a single-cell MU-MIMO broadcast

channel, depicted in Figure 4.1, where the BS is equipped with M antennas that

transmit to K single-antenna user terminals. It is also considered that the slow-

varying path-loss between the BS and the receiver user k is denoted by ak.

M → ∞

user 1

user 2

user 3

user K

Single Cell

BS

Figure 4.1: Single Cell MU-MIMO System

In the work context it will be considered an unbounded path-loss model which

the transmitted signal power decays accordingly to ak =
1

rbk
, where r is the
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distance between BS and the related user k and b is the path-loss exponent that

is related to the signal decay behavior in the cell which is scaled from b = 2

to b = 6 being respectively represented by the free-space attenuation and urban

obstruction. Essentially, in order to summarize the path-loss exponent for outdoor

environments we define in Table 4.1 the typical path-loss exponent ranges.

Table 4.1: Typical Path Loss Exponents

Environments Path-Loss Exponent, b
Free Space 2
Urban Area cellular radio 2.7− 3.5
Shadowed Urban cellular radio 3− 5
In building LOS 1.6− 1.8
Obstructed in building 4− 6
Obstructed in factories 2− 3

Source: Rappaport, Blankenship e Xu (1997).

With these considerations, the received signal vector y ∈ CK of a narrow-

band communication is given by

y = AHx + n (4.1)

where, x ∈ CM is the transmit vector, A ∈ RK×K , diag (a1, . . . , ak) is the path-

loss matrix, H ∈ CK×M the channel matrix and noise vector n ∼ CN{0, σ2
nIK}.

The transmit signal vector x is obtained from the product of the symbol vector s ∼
CN{0, IK} which is normalized in power, i.e, E

[
ssH
]

= Ik. A linear precoding

G ∈ CM×K , [g1, . . . ,gk] and the power matrix P ∈ RM×M = diag (p1, . . . , pk)

allocated for each user define the transmit vector:

x = P1/2Gs (4.2)

Indeed, the transmit vector x can also be expressed as a linear combination of

the independent user symbols sk:

x =
K∑
k=1

√
pkgksk (4.3)

where gk ∈ C1×K and pk ≥ 0 are the precoding vector and the signal power of the

k-th user. We are working under the assumption of perfect channel state infor-

mation at the transmitter (CSIT), consequently the user k has perfect knowledge

of hk and the effective channel hHk gk. The precoding vectors are normalized to

satisfy the average power constraint

tr
(
E
[
xxH

])
= tr

(
GGH

)
≤ P (4.4)
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where P ≥ 0 is the total available transmit power. The SNR at the receiver is

denoted as γ =
P

σ2
.

With the previous considerations, the received DL signal yk at the k-th user

is given as:

yk = ak
√
pkh

H
k gksk +

K∑
i=1,i 6=k

ak
√
pih

H
k gisi + nk (4.5)

where hHk ∈ C1×M is here referenced as the k-th row of the channel matrix H.

Following that, the SINR per user is represented as follows (COUILLET; DEBBAH,

2011):

SINRk =
a2
kpk
∣∣hHk gk

∣∣2
K∑

j=1,j 6=k

a2
kpj
∣∣hHk gj

∣∣2 + σ2
n

(4.6)

In the MIMO broadcast channel the distance between the users is supposed

to be large enough compared to the signal wavelength λ; hence causing the users

being assumed uncorrelated, i.e,
√

Rh = IK . For the numerical simulation-based

analyses, we will use the correlation models for ULA at the transmitter of the

BS, considering a dense pack of antennas and following the correlation models

derived at Sections 2.1.2.

Recovering the initial assumption, the normalized rate of user k is given as

Rk = log2(1 + SINRk) [bits/s/Hz] (4.7)

Moreover, the ergodic sum-rate capacity with equal transmit power allocation

(EP) is given by

RΣ = E

[
K∑
k=1

log2(1 + SINRk)

]
(4.8)

where the expectation is taken over the random channel realizations hk.

4.2 Linear Beamforming Schemes

In this section we derive the sum-rate capacity for each linear precoding case

at the transmitter with equal power allocation. These results will be used in

Section 4.3 to solve a power allocation problem with the perspective of maximize

the sum-rate capacity of the correlated channel.
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4.2.1 Zero-Forcing Beamforming

The ZFBF precoding, also refereed as channel inversion (CI) precoding, eli-

minates all the inter-user interference by performing an inversion of the channel

matrix H at the transmitter side (WAGNER et al., 2012). ZFBF is largely applied to

MU-MIMO networks with single antenna users (YANG; MARZETTA, 2013; COUIL-

LET; DEBBAH, 2011); due to its simplicity on designing beamforming vectors gk it

makes the users to receive data free of interference, which can be attained thanks

to the orthogonality imposed by the beamforming vectors for different users.

The precoding matrix for the ZFBF is given by (WAGNER et al., 2012)

Gzf = αHH
(
HHH

)−1
(4.9)

where α is a parameter added to ensure the transmission power constraint. In-

deed, α is chosen to satisfy the power constraint E
[
xxH

]
= P and it is build

only upon the channel realization H, which is given by

α2 =
P

tr
(
[HHH]−1) (4.10)

The received vector can be represented as

y = αAHHH
(
HHH

)−1
s + n

= αAs + n
(4.11)

where n = [n1, . . . , nk]
T with E

[
nnH

]
= σ2

nIK . With these considerations, the

SINR of user k under ZFBF precoding is given as

SINRk,zf =
α2a2

k

σ2
n

, with K < M (4.12)

By using the ZFBF precoder, multi-user interference (MUI) is completely elimi-

nated (zero-forced), in addition, the pre-coding vector is constructed to eliminate

the interference that a particular user may cause to others, which is called inter-

user interference (IUI).

Notice that the ZFBF has a limited number of users, which is bounded by

the number of BS antennas, K < M . If the number of single-user antennas, K,

increase beyond M the MUI is still present in the system and the SINR described

in (4.12) does not hold. For cases where K > M , the received signal is given by
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(MUHARAR, 2012)

y = αAhk
(
HHH

)−1
HHs + nk

= αakhk
(
HHH

)−1
hHk sk + α

K∑
j=1,j 6=k

ak
√
pjhk

(
HHH

)−1
hHj sj + nk

(4.13)

Leading to a SINR of user k, given by

SINRovl
k,zf =

α2a2
kpk

∣∣∣hk (HHH
)−1

hHk

∣∣∣2
α2

K∑
j=1,j 6=k

a2
kpj

∣∣∣hk (HHH
)−1

hHj

∣∣∣2 + σ2
n

with K > M (4.14)

where α2
∑K

j=1,j 6=k akpj

∣∣∣hk (HHH
)−1

hHj

∣∣∣2 represents the MUI.

Since the SINRk,zf is proportional to α2, a rank deficiency on the channel

correlation matrix HHH will lead to a penalty in α2 and consequently in the

SINR. This motivates the addition of a regularization parameter, which is the

main purpose of our next detector.

4.2.2 Regularized Channel Inversion

The RCI precoding can be faced as a generalization of the ZFBF precoding,

in which the regularization parameter added to the pseudo-inverse has the abi-

lity to tune up the precoder between conventional ZF and matched filter (MF)

schemes (BJORNSON; BENGTSSON; OTTERSTEN, 2014). Basically, to compensate

a possibility of an ill-conditioned channel matrix H, the regularization term is

added within the pseudo-inverse of the ZF precoding matrix, as described in Eq.

(4.9).

Accordingly to Muharar e Evans (2011), considering a system equipped with

the RCI precoder, the precoding matrix is given as:

Grci = αHH
(
HHH + ξIK

)−1
(4.15)

or equivalently

Grci = α
(
HHH + ξIM

)−1
HH (4.16)

where α is used to normalize the transmit power constraint (4.4), and ξ > 0 is the

regularization parameter. Using the representation (4.16) for the RCI precoder,

the normalizing constant α is chosen to satisfy the power constraint E
[
xxH

]
= P .

As stated in Wagner et al. (2012), by assuming independence between the data
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symbols, the total power constraint normalization is expressed as

α2 =
P

tr
(
H (HHH + ξIM)−2 HH

) (4.17)

Using the RCI precoder (4.16) the received signal for each user can be ex-

pressed as

yk = αak
√
pkhk

(
HHH + ξIM

)−1
hHk sk+

K∑
j=1,j 6=k

αak
√
pjhk

(
HHH + ξIM

)−1
hHj sj+nk

(4.18)

where the first term in the right-hand side is the desired signal for each user k

while the other terms are the interference introduced by the other users plus the

receive thermal noise. Assuming single-user decoding at the receiver and treating

interference as noise in the system, the SINR for each user is expressed as follows

SINRk,rci =
α2a2

kpk

∣∣∣hk (HHH + ξIM
)−1

hHk

∣∣∣2
α2

K∑
j=1,j 6=k

a2
kpj

∣∣∣hk (HHH + ξIM
)−1

hHj

∣∣∣2 + σ2
n

(4.19)

considering hk ∈ CM the k−th row of H ∈ CK×M . This result is based on

(MUHARAR; EVANS, 2011), but in our system it is considered the path-loss term

ak.

Analyzing the RCI precoder expression (4.19), specially the regularization

term, ξ, it is simple to verify that it represents a mid term between the ZFBF

precoding and the conjugated beamforming (BF) precoder. Considering the case

where ξ →∞, the RCI precoder converges to the BF precoder, which is given by

Gbf = ξHH (4.20)

since the term
(
HHH + ξIM

)−1
HH of the RCI will tend to ξHH as ξ tends

to infinity. However, since the BF precoding is not one of our work effort, it

will not be considered in our analysis; for more details over the BF precoding

assumption the reader is refereed to (HOYDIS; BRINK; DEBBAH, 2013) and (YANG;

MARZETTA, 2013). Now, in cases where ξ → 0, the RCI precoder converges to the

ZFBF precoder; this relationship is direct, since the term
(
HHH + ξIM

)−1
HH

will tend to
(
HHHHH

)
as ξ tends to zero. With the intention to summarize the

precoders presented in this chapter and to provide a better comparison between

them, the precoding matrix and SINR of each precoder structure were organized

in Table 4.2.
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Table 4.2: Precoding structure, matrix and SINR relations

Precoding Matrix G SINRk

ZFBF (K < M) αHH
(
HHH

)−1 α2a2
k

σ2
n

ZFBF (K > M) αHH
(
HHH

)−1
α2a2

kpk

∣∣∣hk (HHH
)−1

hHk

∣∣∣2
α2

K∑
j=1,j 6=k

a2
kpj

∣∣∣hk (HHH
)−1

hHj

∣∣∣2 + σ2
n

RCI α
(
HHH + ξIM

)
HH

α2a2
kpk

∣∣∣hk (HHH + ξIM
)−1

hHk

∣∣∣2
α2

K∑
j=1,j 6=k

a2
kpj

∣∣∣hk (HHH + ξIM
)−1

hHj

∣∣∣2 + σ2
n

4.3 Power Allocation Scheme

In this section, we discuss the optimal power allocation scheme applied to

the RCI precoding, we also discuss the ZFBF as an special case. Firstly, we

must define the weighed sum-rate maximization problem with a generic precoder,

subject to the power constraint, which is formulated as

maximize
gk, ∀k=1,...,K

RΣ = E

[
K∑
k=1

log2

(
1 +

pk
∣∣hHk gk

∣∣2∑K
j=1,j 6=k pj |hHk gj|2 + σ2

n

)]

s.t. E
[∑K

k=1 pk |gk|
2
]
≤ P

(4.21)

where P is the total power available in transmission.

Considering the RCI precoding deployment as our beamforming matrix at

the BS, G = αHH
(
HHH + ξIK

)
, the sum-rate maximization problem can be

written as

maximize
p, ξ>0

RΣ = E

[
K∑
k=1

log2 (1 + SINRk,rci)

]

s.t. E
[∑K

k=1 pkhk(H
HH + ξIM)−2hHk

]
≤ P

pk ≥ 0, k = 1, . . . , K

(4.22)

where p = [p1, p2, . . . , pk]
T .

For conventional MIMO, the RCI power allocated problem represented by

Eq. (4.22), is still a non-convex problem; besides the concavity of the logarithm

function, the constraint E
[∑K

k=1 pkhk(H
HH + ξIM)−2hHk

]
≤ P is not closed and
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accept infinity solutions, which for any given ξ a locally optimal power allocation

scheme can be obtained. So, our effort is to derive a global optimum ξ which

ensures a maximum value for the SINR function.

In Wagner et al. (2012), the solution to find a global optimum came by deri-

ving the large system limit of the RCI precoder SINR, basically the authors have

formulated an equation to ensure the optimal ξ based on finding the maximum

argument of the ergodic sum-rate for each user, via 1-D line search. This motivate

us to realize the large system analysis in section 4.4; such study enables us to

find an asymptotically optimal value of ξ which maximizes the sum-rate capacity.

The convexity analysis of the RCI is performed over section 4.4.1 and the Proof

were derived in Appendix A.3.

Narrowing down the problem and considering the special case where ξ = 0, we

have the power allocation problem applied in the ZFBF precoder. Now, respecting

the limit number of user such as K < M the problem can be expressed as

maximize
p, ξ>0

RΣ = E

[
K∑
k=1

log (1 + SINRk,zf)

]

s.t. E
[∑K

k=1 pkhk(H
HH)−2hHk

]
≤ P

pk ≥ 0, k = 1, . . . , K

(4.23)

and even though the original sum-rate maximization problem is a non-convex

optimization problem, the interference-free constraint of ZFBF precoder simplifies

the SINR expression, because the multiplication hHk gk,∀j 6= k = 0 and all off-

diagonal elements become zero. This feature guarantees the semi-positive definite

characteristic for the precoded channel, enabling the optimal power allocation.

Furthermore, the solution for the optimal power allocation scheme in (4.23) is

given by the water-filing and can be easily solved by:
p∗k =

[
µ− 1

ki

]+

, i = 1, 2, . . . , K

µ =
1

KA

(
P +

KA∑
i=1

1

ki

) (4.24)

where, ki denotes the ith diagonal element of
(
HHH

)−1
. Notice that the solution

allows KA active antennas, so number of the active ones, KA, must be determined

to solve the problem properly.

Solution (4.24) it is the classical water-filling solution, where the parameter
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µ is the water level. In this solution, the transmit antennas that are not capable

to achieve a minimum SNR level are shut down and their power is redistributed

among the other active remaining ones.

4.4 Large System SINR Analysis

In this section, our goal is to provide a large limit analysis for our system

model. Specifically analyzing the SINR of the RCI in a large system limit where

both number of users K and number of transmit antennas M approach infinity, we

also assume M ≥ K; and M and K are both large with their ratio β = K
M

being

constant. Large system limit analysis expressions for the asymptotic sum-rate

capacity where previously studied in (WAGNER et al., 2012; MUHARAR; EVANS,

2011). Our scheme is motivated by these works, however it will be applied in a

downlink massive MIMO scenario equipped with uniform linear array antennas

at the BS.

In this subject some random matrix theory tools have to be defined. Firstly,

a random matrix can be defined as a matrix with elements being random varia-

bles entries or a matrix-valued random variable (COUILLET; DEBBAH, 2011). In

this context, we are interested in the behavior of large random Hermitian matri-

ces, and particularly in the asymptotic distribution of their eigenvalues. Several

works provide analyses over the eigenvalue distribution of Hermitian matrices,

one of the pioneers were the Wigner’s work (TULINO; VERDU, 2004; WIGNER,

1958), which studied the empirical eigenvalue distribution of any Hermitian ma-

trix whose upper triangular entries are independent and zero mean with identical

variance. Wigner were able to prove that the eigenvalues distribution of those

particular matrices structure converges to a semicircle law.

In the field of wireless communications the application of matrices with se-

micircle distributions are rather limited. Generally, an objective of interest in

this area is in the structure of sample covariance matrices XXH , where X is a

rectangular matrix with independent entries. Those matrices have their many

applications in wireless communication, such as in the ergodic capacity per an-

tenna that is provided in previous sections. The work proposed by Marcenko e

Pastur (1967) was the first considering the limiting spectral distribution of sample

covariance matrices. One of the major results is known as the Marc̆enko-Pastur

law, as defined below:

Theorem 4.4.1. (Marc̆enko-Pastur Law) (TULINO; VERDU, 2004). Consider an
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n×N matrix X whose entries are i.i.d. complex or real random variables with zero

mean and variance
1

N
. As n,N → ∞ with

n

N
→ β > 0, the empirical spectral

density of XXH converges almost surely to a nonrandom limiting distribution Fβ

with probability density function (pdf) given by:

fβ(x) =

(
1− 1

β

)+

δ(x) +
1

2πβx

√
(x− a)+ (b− x)+, (4.25)

where (y)+ = max {0, y}, a =
(
1 +
√
β
)2

, b =
(
1−√β

)2
and δ(·) is the Dirac

delta function.

Equivalently, the empirical spectral density of XHX converges almost surely

to a nonrandom distribution F̃β whose probability density function is (TULINO;

VERDU, 2004):

f̃β(x) = (1− β)δ(x) + βfβ(x)

= (1− β)+ δ(x) +
1

2πx

√
(x− a)+ (b− x)+.

(4.26)

The Marc̆enko-Pastur law provides the probability density function of singular

values of large Hermitian random matrices, when the dimension of the matrix tend

to infinity. As an example, Figure 4.2 illustrates the behavior of the Marc̆enko-

Pastur law.
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Figure 4.2: The histogram of the eigenvalues of XXH (N = 2500)
vs. its Marc̆enko-Pastur law density for β = 0.25

For cases, where the Hermitian matrix were represented by a generic form,
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such as Y = L + XTXH , with L as a deterministic Hermitian matrix and T

is a diagonal matrix, the analysis of the probability in the large limit may take

advantage of a random matrix theory tool, known as the Stieltjes transform,

which is defined in the sequel.

Definition 4.4.1. Let X be a real-valued random variable with distribution FX .

The Stieltjes transform of FX is defined as

mX(z) =

∫ ∞
−∞

1

λ− zFX(λ)dλ = E
[

1

X − z

]
, (4.27)

for z ∈ C+ = {z ∈ C,= (z) > 0}

Notice that the Stieltjes transform uniquely determines the probability distri-

bution of a function in the large limit. A rigorous representation on the Stieltjes

transform can be found in (COUILLET; DEBBAH, 2011), chapter 3.

Besides the mathematical definition of the Stieltjes transform, our develop-

ment will consider an alternative form, which is related to the trace function.

Now, considering X ∈ CN×N as an Hermitian matrix, the Stieltjes transform

of FX , denoted by mX , can be alternatively described as, (COUILLET; DEBBAH,

2011):

mX(z) =
∫∞

0

1

λ− zFX(λ)dλ =
1

N
tr (Λ− zIN)−1

=
1

N
tr (X− zIN)−1

(4.28)

where Λ is a diagonal matrix containing the eigenvalues of X. This directly

implies that the evaluation of the normalized trace of (X− zIN)−1 is equivalent to

evaluating the Stieltjes transform of FX and vice-versa. This relation is extremely

important in order to derive the limiting SINR expression.

In addition to those random matrices tools and theorems, the following lem-

mas also plays an important role in the analysis of the large limiting SINR. The

lemmas are concentrated in provide asymptotic results for particular quadratic

matrices represented in the quadratic form xHANx. In this context we consider

x ∈ CN×1 as a random row vector with i.i.d entries and AN ∈ CN×N as a deter-

ministic complex matrix with uniform bounded spectral radius1. The first lemma

provides the relation between matrices in the quadratic form and the trace of

AN .

Lemma 4.4.2. (COUILLET; DEBBAH, 2011; MUHARAR, 2012). Let x ∈ C1×N

be a random row vector whose entries are i.i.d. with zero mean and variance
1Spectral radius of a square matrix or a bounded linear operator is the largest absolute value

of its eigenvalues, i.e. supremum among the absolute values of the elements in its spectrum,
denoted by ρ(λ).
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1
N

. Let AN ∈ CN×N be any matrix with uniformly bounded spectral norm2 and

independent of x. Then, as N →∞,

xANxH − 1

N
tr (AN)

a.s.−−→ 0 (4.29)

Secondly, an important quadratic expression, that is commonly used in pre-

coding systems, is in the form gN = x
(
BBH + νIN

)−1
xH , which appears many

times in the SINR expressions of a communication system.

Lemma 4.4.3. (MUHARAR, 2012). Let gN = x
(
BBH + νIN

)−1
xH , where B ∈

CN×n, with n < N and ν > 0. Suppose that the elements of B are i.i.d. with

zero mean and variance
1

N
, x and B are independent. Then, as n,N →∞ with

n

N
→ β,

gN − g a.s.−−→ 0,

where g is given by

g(β, ν) =

(
ν +

β

1 + g

)−1

=
1

2

√(1− β)2

ν2
+

2 (1 + β)

ν
+ 1 +

1− β
ν
− 1

 .

(4.30)

The proof of this Theorem in held in (NGUYEN; EVANS, 2008).

In general, the above expression is the evaluation of Lemma 4.4.2 over gN =

x
(
BBH + νIN

)−1
xH which is related to the trace of

1

N

(
BBH + νIN

)−1
, that

leads to the Stietjes transform of the Hermitian matrix,
(
BBH + νIN

)−1
, whose

probability density function obey the Marc̆enko-Pastur law. Thereby, the ex-

pression (4.30) can be seen as the Stieltjes transform of the Marc̆enko-Pastur

probability distribution law.

By evaluating the SINR expression of the RCI precoder (4.19) and considering

the previous theorems and lemmas, we derive the SINR at the large system limit

with M and K tending to infinity with a fixed ratio β = K
M

. The result is

indicated by theorem 4.4.4.

Theorem 4.4.4. (MUHARAR, 2012) Considering all users with the same power

and same path-losses, let ν =
ξ

M
be the normalized regularization parameter,

γ =
P

σ2
be the received SNR and g(β, ν) be the function defined in (4.30). Then,

the desired signal converges almost surely to

S(β, ν) = P
g(β, ν)

(1 + g(β, ν))2

(
1 +

ν

β
(1 + g(β, ν))2

)
(4.31)

2Spectral norm of a square matrix is the square root of the maximum eigenvalue of AHA.
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and the interference converges almost surely to

I(β, ν) =
P

(1 + g(β, ν))2
. (4.32)

Consequently, the SINR converges almost surely to a deterministic limiting

SINR value, given by

SINR∞(γ, β, ν) = g(β, ν)

γ +
γν

β
(1 + g(β, ν))2

γ + (1 + g(β, ν))2
. (4.33)

Prof: See Appendix A.2

From the SINR expression above, it can be seen that in the large limit the

SINR is the same for all users and converges to a deterministic value that depends

only upon the system parameters, such as the regularization parameter ν, cell

loading β and the received SNR γ (MUHARAR, 2012).

4.4.1 Optimal System Parameters

At first sight the limiting SINR expression shows us that it is user independent

and depends only on the regularization parameter ν, cell-loading β and received

SNR γ. Firstly, our major concern is to evaluate how the regularization parameter

affects the limiting SINR. It is important to ensure that the RCI precoding is

configured in order to maximize the limiting SINR and consequently to provide

the maximum limiting sum-rate capacity per user. Based on (4.33), the limiting

sum-rate capacity per antenna (or single-antenna user) can be defined as

R∞k = β log2(1 + SINR∞(γ, β, ν)). (4.34)

One can verify that there is an one-to-one monotonic mapping between the

limiting sum-rate capacity and the limiting SINR. Maximizing the limiting SINR

via ν and γ will result in an equivalently increase at the maximum sum rate

capacity. Analyzing the limiting interference equation, (4.32), it is clear that the

interference energy is decreasing as g(β, ν) increases. So increasing the regula-

rization parameter ν will increase the level of interference. Now, deriving the

signal expression, (4.31), w.r.t. ν we have the signal behavior in terms of the

regularization parameter variations. From (4.31), it is evident that S(β, ν) is an

increasing function with ν; for brevity, we denote g(β, ν) as g. Deriving the signal
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w.r.t. ν we have:

dS(β, ν)

dν
=

2g2

(1 + g)
· 1

β + ν(1 + g)2
> 0, (4.35)

Now, we must evaluate how ν affect the limiting sum rate capacity. As

verified, both signal and interference increase with ν. To achieve improvements

at the SINR and consequently to the limiting sum rate capacity, we should reduce

ν to suppress the interference and, at the same time, we should increase ν to

reinforce the desired signal. Hence, ν provides a trade-off between decreasing the

interference level and increasing the signal energy and it must be precisely chosen

the optimal regularization parameter value ν∗ in order to maximize the system

capacity. Figure 4.3, illustrates the behavior of the limiting sum rate capacity

as a function of ν, considering two cell-loading configuration, the first one with

16 × 16 antennas and the second system with 16 × 12 antennas, which can be

respectively related to β = 1 and β = 0.75; both scenarios were evaluated under

a medium SNR regime, γ = 10dB.
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Figure 4.3: Limiting sum rate capacity for different values of ν in scenario
limited to γ = 10dB of SNR.

One can observe that the limiting capacity per user have a maximum point

w.r.t. ν and the determination of this optimal point is easily realized through a

line-search over the objective function. The behavior of the limiting SINR w.r.t

ν was studied by (MUHARAR, 2012), which concludes that the limiting SINR is
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a quasi-concave function of ν and it is maximized by setting ν = ν∗ where ν∗ is

unique and given by:

ν∗ =
β

γ
(4.36)

Hence, assuming the optimum regularization parameter ν∗, one can conclude

from (4.33) that the SINR converges almost surely to a deterministic optimum

limiting SINR value, given by:

SINR∗∞(γ, β, ν∗) ≡ g(β, ν∗) (4.37)

Consequently the maximum limiting sum-rate capacity per-user is obtained

as:

R∞k = β log2(1 + SINR∗∞(γ, β, ν∗)). (4.38)

Proof: See Appendix A.3

Following this result, the expression for the optimal ν that maximizes the

limiting sum rate capacity becomes very simple and is given by the ratio between

the cell loading and the received SNR. This result implies that, at high SNR

regime, ν∗ becomes very small and the RCI precoding matrix tends to behave

like the ZFBF one due to the low impact of the regularization parameter in the

channel inversion. On the other hand, for cases where the cell loading is very

high, i.e, an over loaded cell condition, the impact of ν∗ in the channel inversion

becomes more evident, and we should expect that the RCI precoding matrix will

performs as the BF one or a matched filter. This analysis on the ν∗ confirms that

the RCI is a mid term between the ZFBF and the BF precoders and must be

tuned properly in order to provide performance and capacity gains. This results

are also discussed and confirmed by (WAGNER et al., 2012) but using a distinct

approach for the large system analysis.

Another major concern related to the limiting sum-rate capacity achieved by

the RCI precoder is related to the cell-loading β. Fig. 4.3 indicates that it is

possible to achieve different limiting sum-rate capacities by varying β. Conside-

ring an optimal regularization parameter ν∗, we must verify how the cell-loading

affects the maximum limiting SINR and consequently the maximum limiting sum

rate capacity (4.38). The solution of g(β, ν∗) comes from (4.30), and considering

the optimal regularization parameter it can given by:

g(β, ν∗) =

(
β

γ
+

β

1 + g(β, ν∗)

)−1

. (4.39)

From the above expression it is clearly that, increasing the SNR will result in
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improvements at the limiting SINR and consequently in the limiting sum rate. It

is easy to check that (MUHARAR, 2012):

dg(β, ν∗)

dβ
= − 1

β2

(
1

γ
+

1

(1 + g(β, ν))2

)−1

< 0, (4.40)

which indicates that the maximum limiting SINR is a decreasing function of the

cell-loading. Analyzing the limiting sum-rate capacity, eq. (4.38), increasing β

will increase the pre-log factor but decrease the log term.

The following equation defines the characterization of the sum-rate with res-

pect to optimum cell-loading β. Accordingly to Muharar (2012), for γ > 1,

the limiting sum-rate is a quasi-concave (unimodal) function of β. The unique

stationary point, β∗, is given by the solution

β∗ = γ
(1 + g(β∗, ν∗))(

γ + (1 + g(β∗, ν∗))2) log (1 + g(β∗, ν∗))
. (4.41)

Since, R∞k is unimodal w.r.t. β, the optimum cell-loading β∗ can be found

effectively by using the bisection method of even a line search method to find the

root of equation (VANDENBERGHE; BOYD, 1996).

With these results it is easy to note that the limiting SINR and consequently

the sum rate capacity per user have a maximum point w.r.t. the regularization

parameter and the cell-loading. When it comes to the cell-loading, accordingly

to (4.41), the maximum point is also function of the SNR output, and in order to

evaluate the behavior of the limiting sum rate capacity w.r.t. the cell loading, it

is important to consider various SNR outputs, in order to provide the best value

of β for the desired SNR regime.

To confirm the previous metrics related to the limiting sum rate capacity, we

simulate the RCI precoder for various cell-loading conditions, with the perspective

to ensure the maximum regularization parameter, which is given by ν∗ =
β

γ
, and

the maximum cell-loading. The simulations are presented in section 4.5 which also

discuss the implementation of the water-filling strategy to maximize the limiting

sum-rate capacity in different cell organization schemes.

4.5 Numerical Analysis and Results

This chapter developments are related to the simulation results for the SINR

and consequently the limiting sum rate capacity of the ZFBF and the RCI pre-

coders for different system arrangements, in the sense of number of antennas at
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the BS and number of users in the cell. Furthermore, it will be evaluated and

compared the proposed precoding schemes under equal power distribution and

under an optimal power allocation scheme, that will be given by the water-filling

technique for a given correlated channel. Besides, the deterministic large scale

limit SINR and sum rate capacity will be analyzed and compared aiming to verify

its behavior at the maximum regularization parameter and cell-loading choices.

Firstly, for analysis purpose we consider a scenario consisting of 16 antennas

in the radio base station and an increasing cell-loading until a condition of full

loading. Firstly, Figure 4.4 a) characterize a system working in a low SNR regime,

which is represented by the condition of γ = 5dB.
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Figure 4.4: Limiting sum rate capacity for different values of β, considering ν∗

in scenario with various SNR regimes and 16 antennas at the BS.

In a low SNR regime, the sum rate capacity per user increase with the cell-

loading. This behavior is observed due to the high noise present in the system,

so the limiting capacity per user is clearly poor and the interference effect over

the increasing number of users is not verified.

Figure 4.4 b) gave us the sum rate capacity variations w.r.t. β considering

a scenario of medium SNR, γ = 10dB. In this context, the signal power is

considerably higher than the noise power and the interference between users effect

can be verified by the decrease in capacity observed as the cell-loading increase

beyond βmax = 0.75. In this scenario choosing β∗ = βmax is the best cell-loading
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in terms of capacity per users maximization.

Finally, Figure 4.4 c) represents the high SNR regime, γ = 20dB, in the

following scenario we have a great increase in capacity due to the great signal

power. One can observe that the maximum cell-loading for this case is also

provided by β∗ = 0.75, this result indicates that for an increasingly SNR scenarios,

we may limit the number of users in the cell in order to ensure the maximum

capacity per user. We also observe that for high SNR regime the decay in capacity

is more intense, when compared to the medium SNR regime. This behavior is

explained due to the increasingly interference between users in the cell that is

observed with strong signal. So, in order to maximize the limiting sum rate

capacity per user, on the RCI precoder, it is important to ensure the maximum

cell-loading and regularization parameter as previously defined.

As our main objective is to provide an analysis for a large scale scenario, lets

evaluate the cell-loading impact on the limiting sum-rate capacity considering a

high sized system, specifically, composed by a M = 256 antennas at the BS.
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Figure 4.5: Limiting sum rate capacity for different values of β, considering ν∗

in scenario with various SNR regimes and 256 antennas at the BS.

Evaluating the limiting sum rate capacity in a high sized system, Eq. (4.34),

it does not change much the asymptotic achievable capacity per user as seen in

Figure 4.5. This is due to the fact that it is a theoretical result based on the
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limiting SINR, Eq. (4.33), which by its turn does not depend directly on the

number of users, but mainly is in the cell-loading and in the system SNR output.

One can verify that the optimal cell-loading is still near 75% (β∗ ≈ 0.75) even

for a high sized system, presenting a minor deviation of this value. Hence, this

behavior is expected asymptotically which lead us to conclude that in a single

cell system the optimal cell-loading in terms of maximizing the limiting sum rate

capacity is around 75% of the full loaded condition, while the respective number

of users and the attainable sum-rate system capacity are:

K∗ = β∗ ·M ≈ b0.75 ·Mc [users] (4.42)

R∗∞Σ =
K∑
k=1

β∗ log2(1 + SINR∗∞(γ, β∗, ν∗)) =
K∑
k=1

β∗ log2(1 + g(β∗, ν∗))

(4.43)

In this context, we already have modeled the limiting SINR and limiting sum

rate capacity of a broadcast RCI channel and characterized its behavior w.r.t.

the regularization parameter and the cell-loading. Figure 4.6 depicts a surface

combining both the limiting sum rate capacity variations w.r.t. ν and β in a

medium SNR regime scenario of γ = 10dB.
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Figure 4.6: Surface representing the Limiting Capacity per user variations on
the RCI precoder w.r.t. β and ν, limited to γ = 10dB

One can verify that the surface represented in Figure 4.6 have a maximum

point w.r.t. ν and β, that when combined it maximizes the limiting sum rate
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capacity per-user. As our goal is to maximize the total sum-rate capacity of

the system, ensuring the best per-user sum rate capacity is a first step towards

achieve the best case scenario for the RCI precoding scheme.

As we have modeled the optimal parameter which maximizes the sum rate

capacity of an RCI precoder, it was granted deterministic values for ν and β each

one assuming the optimal value for a specific system configuration. The fact of

having a deterministic value for the regularization parameter at the RCI precoder

impacts directly on the convexity of a power allocation problem developed for

the RCI precoder, represented by equation (4.22). The next section analyzes the

optimal power allocation schemes for the RCI and ZFBF precoders in a scenario

related to a group-wise user selection, where each group represents a specific

path-loss related to each user and the impacts of power allocation scheme on this

cell configuration.

4.5.1 Power Allocation and User Grouping in LS-MIMO
Systems

In this section it will be considered the original SINR formulation for the

RCI precoder, Eq. (4.19), considering different power and path-loss coefficients

to each user which introduces a slightly difference in the limiting SINR per user,

Eq. (4.33). Now, each user will have a related power and path-loss, consequently,

the limiting SINR for each user is given by

SINR∞k = pkg(β, ν)

γk +
γkν

β
(1 + g(β, ν))2

γk + (1 + g(β, ν))2
.

= pkfk(β, ν),

(4.44)

where γk =
Pa2

k

σ2
n

is defined as the effective SNR and pk =
pk
P is the normalized

power w.r.t. P . We define P = lim
K→∞

1
K

∑K
k=1 pk. Different from equation (4.33),

now we can observe that the limiting SINR is different for each user and depends

on ak and pk. Also one can verify that fk is independent from pk in (4.44), where

fk represents the limiting SINR and pk the average power allocated to each user in

the cell. Such conditions will facilitate the analysis in finding the optimal power

allocation that maximizes the limiting sum rate capacity.

Furthermore, in the context of this work, it will be consider a scenario where

all K users are divided into a finite number of L groups and all users in the same

group are assumed to have a similar path-loss. Hence, without loss of generality,
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we consider the path-loss power under an unbounded model where b is the path-

loss exponent. Under this assumption the path-loss assumes the form:

aj =
1

rbj
, where rj = j

R

L
for j = 1, . . . , L;

R is the radius of the cell. The number of users in group j is denoted by Kj,

with
∑L

j=1 Kj = K. Since all user in the same jth group have the same path-

loss and system parameters, such as β, ν and the SNR, based on Eq.(4.44), it is

reasonable consider that the power allocated to each user in that group is also the

same. Figure 4.7 exemplify the case for a 16× 16 system in a R = 4 km macro-

cell with user grouping (four clusters); an urban cellular radio environment has

been considered, where all user in determined group will have the same associated

path-loss.
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Figure 4.7: 16× 16 system in a R = 4 km macro-cell with user grouping (four
clusters), where all user in a group have the same path-loss.

Based on this scenario, we can characterize the limiting achievable sum rate

capacity per antenna as follows:

R∞Σ =
L∑
j=1

βj log2(1 + SINR∞j ) (4.45)

where βj =
Kj
N

represents the cell-loading of the jth group. Considering the

goal of finding the optimal power allocation that maximizes RΣ we define p =
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[p1, p2, . . . , pL]T , then a joint optimization problem can be formulated

maximize
p, ν

R∞Σ
s.t.

∑L
j=1 βjpj ≤ P

pj > 0, j = 1, . . . , L

ν > 0

(4.46)

Note that the proposed power allocation problem is similar to the one defined in

Eq.(4.22), the difference is that Eq. (4.46) represents the large scale version of

the previous one. Also note that the first constraint represents the large system

average power limitation and the second one guarantee that the normalized power

are non-negative.

Before solving the problem (4.46), it is important to characterize the concavity

of the objective function. To do so, we evaluate the concavity of a single group,

considering the limiting SINR as a function of pj. The limiting sum rate for a

single group j is denoted by R∞Σ,j = βj log2

(
1 + SINR∞j

)
and one can verify that

it is an increasing function in pj. Moreover, one can observe that the sum rate

per antenna R∞Σ is concave in p.

In order to prove this concavity condition, the second derivative of the SINR∞j

w.r.t pj is evaluated:

∂2SINR∞j
∂2pj

= − f2j(β, ν)(
1 + pjf

2
j(β, ν)

)2 < 0. (4.47)

The second derivative is negative which implies that SINR∞j is concave in pj.

Since the logarithm operation does not change the concavity of a determined

function, R∞Σ,j is also concave in pj. Moreover, R∞Σ is a linear combination of

SINR∞j and this operator holds the convexity condition. From this analysis, we

observe that for a fixed ν at the RCI precoder, problem (4.46) is a convex program

due to the concavity of R∞Σ w.r.t p, and because there are only linear constrains,

resulting in a convex set.

Now, we are able to evaluate the Lagrangian for non-linear programming of

(4.46), defined as follows

L =
L∑
j=1

βjlog2

(
1 + pjfj(β, ν)

)
− λ

L∑
j=1

βj
(
pj − 1

)
+ µjpj + κν, (4.48)

where λ and µj are the Lagrangian multipliers respectively related to the average

and non-negative power constraints, and κ is the Lagrange multiplier for the

regularization parameter constraint ν ≥ 0. Then, the associated Karush-Kuhn-
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Tucker (KKT) necessary conditions are given by

∂L
∂ν

=
L∑
j=1

βjpj
1 + pjfj(β, ν)

∂fj(β, ν)

∂ν
+ κ = 0 (4.49)

∂L
∂pj

= βj

(
fj(β, ν)

1 + pjfj(β, ν)
− λ
)

+ µj = 0, (4.50)

and λ
∑L

j=1 βj
(
pj − 1

)
= 0

µjpj = 0

κν = 0 ∀j = 1, . . . L

(4.51)

Remembering that for a given ν, problem (4.46) reduces to a convex program,

ensuring the necessary KKT conditions leads to an optimal power allocation

strategy which maximizes the limiting sum rate. The solution of the problem is

classical and is given by the Water-Filing algorithm as stated bellow.

Accordingly to Muharar (2012), for a fixed ν, the optimal power allocation

for MIMO systems with user grouping, in which the optimization structure is

defined as (4.46), follows the water-filling (WF) scheme and is given by

pj =

[
1

λ
− 1

fj(β, ν)

]+

(4.52)

where (x)+ = max[0, x]. The Lagrange multiplier, λ, is the solution of

L∑
j=1

βjpj = P,

which guarantees that the average power constraint is satisfied.

Moreover, in the WF scheme for a large-scale MIMO systems the term
1

λ
can

be viewed as the water level, which determines how power level is poured among

users and is based on the value of fj(β, ν). With this conditions and recalling

that the SINR of an user belongs to the jth group is determined by pjfj(β, ν). It

can be verified that fj(β, ν) is increasing with aj. Therefore, more power will be

allocated for the user with better channel conditions which over this scenario can

be determined by its path-losses.
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4.5.2 Numerical Simulation Results

In this section, illustrative numerical BER, limiting sum-rate and per-user

capacity of the previously discussed MIMO precoders are presented and compa-

red. The system analysis is performed as a data transmission from a BS, with M

antennas to K users (MT’s) equipped with a single antenna which is the down-

link scenario of a MIMO single-cell. In order of simplicity we have considered

for all cases a 4-QAM modulation and perfect knowledge of the channel at the

transmitter side, which means, the content of H is available at the transmitter

side.

The first analysis consists in a comparison between the ZFBF and RCI preco-

ding schemes. For such analysis we considered the BER and an Ergodic sum rate

capacity evaluation, considering a Full loaded cell (β = 1) and various under-

loaded cell conditions (β < 1). Figure 4.8 depicts the BER for these scenarios.
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Figure 4.8: a) BER for the ZFBF and RCI precoders in a fully loaded
condition (β = 1) and b) BER for the ZFBF and RCI precoders in an

underloading condition (β < 1)

Regarding the Full-loaded Cell, it is easy to conclude that the RCI provides

better performance in terms of BER. The RCI precoder introduces significantly

gains in high SNR regime when compared to the ZFBF precoder, providing a

performance gain in the order of approximately 5dB in the 16 × 16 condition.
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Notice that, as the number of user in both BS and MT side increase, it will also

be seen a slightly increase at the performance gap between the ZFBF and the

RCI. Considering Figure 4.8 b), we have a representation of an under-loaded cell

conditioning. In this scenario we verify that as lower the cell loading the higher is

the performance gain, this behavior is given by the spatial diversity gain that is

introduced due to the lower number of antennas at the MT side. Near a β = 0.75

cell-loading condition performance gains for the RCI are verified, specially under

low SNR region.

Besides the performance analysis, the most relevant merit figure for the pre-

coding scenario is the Ergodic Capacity of the system. Figure 4.9 a) represents

the sum rate capacity of the ZFBF and the RCI precoders under a full-loaded

cell conditioning.
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Figure 4.9: a) Erdogic Capacity for the ZFBF and RCI precoders in a full
loaded condition (β = 1) and b) Erdogic Capacity for the ZFBF and RCI

precoders in an under-loaded condition (β < 1)

In this context, it was verified that the RCI provides better capacity, specially

under a low or medium SNR regime, when compared to the ZFBF scheme. As

the number of antennas and users in the cell increase, the gap between both

precoders capacity also increases. This behavior occurs due to the addition of

the regularization parameter on the RCI precoder, which controls the amount
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of interference that is acceptable for each user in the cell. This parameter also

considers the noise variance in the channel inversion which turns out to reduce

the AWGN noise impact over the system capacity and BER performance. This

can be verified in equation (4.36) when the optimal regularization parameter is

derived as a ratio between the cell-loading and the SNR, which is directly related

to the noise variance.

Now, regarding Figure 4.9 b) it gave us the sum rate capacity of the ZFBF

and the RCI precoders under an under-loaded cell loading condition. Under

this assumption, it is only observed a gain in capacity for the RCI precoder, in

the 16 × 12 configuration, at a low SNR regime. This behavior is again due

to the compensation in the noise variance introduced by the RCI regularization

parameter, that compensates ill conditioned channel plus noise matrices that are

commonly known to deteriorates capacity in low SNR. The lack of difference

between the ZFBF and RCI capacities in the sub-loaded cell condition is due to

the fact that there is a great spatial diversity, which implies in a lower interference

between users in this condition and also makes the regularization parameter less

effective in channel inversion, because the stronger tern in this condition is the

thermal noise, not the interference.

In Figure 4.10, an interesting analysis of RCI performance and capacity were

performed by comparing it with the MMSE strategy for channel inversion, where

the regularization parameter in large scale system ν and the noise variance σ2
n. In

this context, the interference effect is not considered in the precoder project, lea-

ding to greater performance and capacity in low to medium SNR regime, where

the noise effect is more relevant. The regularization parameter of the RCI pre-

coder was designed to maximize the capacity in an asymptotic SINR condition

ensuring the RCI to have better performance and capacity in high SINR regime,

where the interference is the major concern. One can observe that, for optimal

cell-loading condition β∗ ≈ 0.75, the MMSE and the RCI will achieve similar

performance and capacity. This condition emerges due to the minimization of

the interference effect that is introduced by the optimal cell-loading condition,

which cause the noise variance turns out to be the main source of error in the

system under this assumption.

As seen before, the RCI precoder provides better performance and capacity

when compared to the ZFBF precoder. Also, as it considers the interference in the

regularization parameter as one of the major concerns for the channel inversion,

it ensures in high SNR regime, or asymptotic SINR regime, better performance

and capacity when compared to the MMSE channel inversion strategy.
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Figure 4.10: BER and Erdogic Capacity comparison between the MMSE and
the RCI precoders in a full loaded condition (β = 1) and optimal under-loaded

condition (β ≈ 0.75)

4.5.2.1 Incorporating Power Allocation Scheme

Now, focusing on maximizing the achievable Ergodic Capacity we incorpo-

rate an optimal power allocation scheme at the system, which is given by the

water-filling strategy that was defined in Equation (4.46). In our first scenario

it was considered a LS-MIMO in a macro-cell of R = 10 km radius, with one

BS equipped with M = 64 antennas and different cell-loading conditions. As

an example, Figure 4.11 depicts an 64 × 64 system in a R = 10 km macro-cell,

considered uniform distributed random path-loss for each user. Following Table

4.1, we choose an urban cellular radio environment as our main condition, which

leads to a path-loss exponent b = 3.5.

In this context, Figure 4.12 shows the performance and capacity comparison

between the RCI and RCI-WF under several cell-loading conditions. Analyzing

the BER performance in Figure 4.12, greater spacial diversity, such as 64 × 16,

will directly imply in better performance. It is also found that the difference in

performance between the RCI and the RCI-WF will have a narrowing of the gap
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Figure 4.11: 64× 64 system in a R = 10 km macro-cell with random path-loss
for each user, considering an urban cellular radio environment (b = 3.5).
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Figure 4.12: BER and Erdogic Capacity comparison between the RCI and
RCI-WF strategy precoders in a full loaded condition (β = 1) and under-loaded

conditions (β < 1), considering M = 64 antennas at the BS.
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as the loading of cells approaches the full load condition. An interesting analysis

can be done by studying the greater performance offered by the RCI-WF; this

behavior can be explained by two different factors. The major reason is due to the

path-loss and channel condition of each user in the cell, both information are used

by the WF algorithm to determine which users will communicate with the BS.

Hence, in poor channel conditions and/or higher path-losses, the performance gap

between both precoders may increase, due to the active number of users. Knowing

that the ones with better channel and aggregated path-loss will, consequently,

have greater associated power which enhance the achieving capacity.

Now, considering the ergodic capacity, it is simple verify that the RCI-WF

with an optimal-loading condition is the one that provides the greater achievable

capacity, due to the interference minimization offered by optimal cell-loading and

also the capability of eliminating some users with poor channel conditions that is

provided by the WF. An interesting observation is that, as we are considering an

uniform random path-loss distribution, there is the possibility that the users are

placed near the BS and the achievable capacity will be even better then expected,

which is the case of the RCI-EP 64×32 when compared with the RCI-EP 64×48

in an optimal cell-loading.

In order to demonstrate the effectiveness of the WF-based precoders to ensure

better capacity we analyze a second scenario, consisting again in a macro-cell of

R = 10 km radius with one BS, but now, considering a system MIMO with a

BS equipped with M = 16 antennas and different cell-loading conditions. Figure

4.13 depict a 16×16 cell configuration in the R = 10 km macro-cell with uniform

random path-loss for each user. The path-loss exponent were kept as b = 3.5.

Figure 4.14 provides a performance and capacity comparison between the RCI

and RCI-WF, in a conventional MIMO condition, over different cell-loading. In

this context, it was verified a small BER performance increase at an under-loaded

cell condition for the RCI-WF and negligible performance gains under full-loaded

scenarios.

Considering the ergodic capacity, it is simple verify that in a LS-MIMO scena-

rio the achievable capacity is many times greater the conventional MIMO system,

this behavior is expected as the capacity of a MIMO system will increase with the

factor min(M,K). There is such greater discrepancy as a full-loaded LS-MIMO

RCI-WF achievable capacity achieves the same 40 bps/Hz as the optimal-loading

RCI-WF in a conventional MIMO scenario. Also, the tendency of the WF aided

precoders to ensure greater capacity can be verified as the achievable capacity of
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Figure 4.13: Example of random user’s placement (uniform random path-loss
for each user) in a 16× 16 system with a macro-cell of R = 10 km radius,

considering an urban cellular radio environment (b = 3.5).
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Figure 4.14: BER and Erdogic Capacity comparison between the RCI and
RCI-WF strategy precoders in a full loaded condition (β = 1) and under-loaded

conditions (β < 1), considering M = 16 antennas at the BS.
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a RCI-WF 16 × 8 is the same capacity of an optimal loading RCI-EP 16 × 12,

so the conclusion here is that the WF aided precoding strategies can provide an

increase over the system ergodic capacity even in conventional MIMO scenarios.

4.5.2.2 User Grouping in LS-MIMO Systems

The last analysis of this work is related to the user grouping in LS-MIMO

systems and how the user distribution over the cell will impact the capacity.

Now, users in determined areas of the cell will be selected to be part of certain

groups or, in other words, clusters. Figure 4.15, exemplify the case for a 64× 64

system in a R = 4 km macro-cell with user grouping; an urban cellular radio

environment has been considered, where all user in determined group will have

the same associated path-loss.
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Figure 4.15: 64× 64 system in a R = 4 km macro-cell with user grouping
(four clusters), where all user in a group have the same path-loss.

The main goal of this analysis is to show, the best case scenario of user

grouping in the cell configuration which maximizes the system capacity, under

an uniform distribution of path-losses ak. From the previous RCI-WF results we

know that users with best channel conditions and lower associated path-loss will

be favorable under an uniform distribution of users in the cell. Now, considering

the RCI-WF precoder in a single-cell sectioned by L = 4 groups, where each

group have the same number of users, our goal is to compare this distribution

achievable capacity with a uniform user’s placement distribution. Figure 4.16

depicts this first scenario, with L = 4 clusters and β ∈ [0.75; 1.00].
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Figure 4.16: Achievable Erdogic Capacity of the RCI-WF precoder considering
L = 4 group of users compared with an uniform distributed Path Loss Scenario.

It is known that in a uniform random distribution, we have a lower density

of users as we move from BS. In this context, the first clustered scheme considers

the same number of users in each cluster, and this condition was chosen to keep

the distribution of the users density as close as possible to the uniform one. The

greater difference is that in the uniform distribution, users can be placed closer

to the BS when compared to the distance of the first cluster (L = 1km), leading

to grater associated power to those users, and consequently, lesser users will be

eliminated by the WF. This effect can be verified in Figure 4.16, where there is

a gap between the RCI-WF 64× 48 with random distribution and the clustered

version. Under the same cell conditioning this gap also increases as the SNR is

incremented. Now considering a full loaded scheme, 64 × 64, the gap between

both strategies decreases as the SNR increases.

In the optimal-loading condition there is an interference balance, in the sense

of a best trade-off, and as the SNR increases more groups will be activated by the

WF. As these users have the same associated path-loss, there will be a fair dis-

tribution of power among users in the same group, but still serving, in the mean,

a lower number of users when compared to the uniform distributed one. Also,

this power distribution leads to a detriment of the over all achievable capacity of

the clustered scheme in compare with the uniform distributed one. Now, in the

full-loaded case, the behavior is the opposite because there is a higher amount

of interference due to the greater number of users in the cell. So in low SNR
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regime only the first groups will be active leading to a lower capacity, and at high

SNR regime the clustered version will tend to behave as an uniform distribution.

This facts suggest that is better the BS to communicate only with the near users,

which means the ones in the first and/or second groups, but with a cost of having

a decrease in the total achievable capacity at high SNR regime.

With this idea in mind, the second scenario is based on the assumption that

as close are the user from de BS, the better the achievable capacity. With the

goal of nearing the gap between the clustered and the uniform distributions in

a cell equipped with the RCI-WF, we redistribute the user’s placement and the

respective path-loss associated to each group by manipulating the path-loss ex-

ponent, b, decreasing from the first and second groups and increasing the fourth

group associated path-loss, resulting:

b1 = 2; b2 = 2.5; b3 = 3.5; b4 = 5.5

This means that users placed in the first and second group will be seen much

closer then the previous scenario, near a LOS condition, and users in the outer

group will be considered in an obstructed path-loss condition and will probably

be disconnected by the WF procedure.
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Figure 4.17: Achievable Erdogic Capacity of the RCI-WF precoder
considering L = 4 groups with redistributed path-losses compared with an

uniform distributed Path Loss Scenario.

Figure 4.17 illustrates how the system capacity behaves as users placed in

groups L = 1 and 2 get closer to the BS, consequently their associated path-loss
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decrease, and the group L = 4 is seen farther from the BS, as a measure to

provide a balance in the user distribution. Under this scenario, considering an

optimal cell-loading, (64 × 48), in a medium SNR region, the gap between the

uniform distributed version and the clustered one can be narrowed to a condition

where they achieve near the same capacity.

In this clustered cell condition, the active number of users, under medium

SNR, will be limited to the ones in groups L = 1 and 2, where in the mean,

the number of active users in both clusters become very close to the one in

the uniform distributed scenario. So, with these new path loss distribution the

clustered version will behave as an uniform one in medium SNR regime, but with

a fairness in the power distributed to each active users in the first two groups.

Due to this condition, with an SNR increment to a high regime, an increase

in the gap will be again verified. This behavior in its majority is due to the

unequal distributed power in the uniform random scenario which prioritizes the

closest users leading to and increase in the overall capacity, but also due to the

deactivation of the fourth group in the clustered scheme.

Finally, in the full-loaded case (64 × 64) where it is considered a maximum

interference condition, the redistributed path-loss will only decrease the capacity

in all SNR range. As users are considered to be closer, there will be a greater

amount of users activation by the WF, and a fair power distribution among them

in their following groups, but now, as the channel conditions are more devastated,

due to the interference, this greater amount of active users will lead to an over

all capacity decrease over the entire SNR range.

This analysis show us that, in the sense of sum rate capacity maximization,

it is interesting to the BS to maintain only a communication with the near users,

activating the farthest ones as the power available at the BS (SNR) increases. The

clustered scheme were proposed with the finality of diminishing the computational

loading aggregated to the path-loss estimation for each user, which is fundamental

in a uniform random distribution scheme, by considering the same path-loss for

each cluster. Under this assumption, it was verified that, in an optimal cell

loading, (64× 48), considering the first two groups (L = 1 and 2) being closer to

the BS, it was possible to achieve a near optimal WF capacity that is provided

by an uniform distribution, but now, with a fairness in the power allocated to

the active user.
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4.6 Conclusions

This chapter carried out an investigation of the problem related to the optimal

power allocation of a finite group of clustered users which maximizes the capacity

in MIMO broadcast channel where all users are equipped with single antennas.

The large system analysis of the broadcast channel with the RCI precoder were

performed in order to determine the optimal regularization parameter and cell-

loading which maximizes the limiting SINR and also their effect on it. In this

condition, we show that the RCI precoder ensures a superior BER performance

and capacity when compared to the ZFBF scheme. We also compare the RCI with

the MMSE method which considers only noise variance in the channel inversion,

showing the superiority of the RCI in a full-loaded cell under a large SNR regime.

Even though the analysis was performed over the large system limit, the

simulations proved that it is also valid for finite size system. Related to the

power allocation problem, we show that the optimal solution is achieved trough

a water-filling resource allocation scheme at the BS, which determines the power

associated to each active user in the cell.

We also provide the KKT necessary conditions for the optimal cell-loading

allocation scheme when the BS is allowed to communicate only with a subset of

users. Under this assumption we show that in a clustered conditions, it is conve-

nient that the BS communicate only with users in the first groups which will lead

to a capacity loss under an optimal cell-loading condition. Now, with a restruc-

ture in the path-loss distribution over the clusters, it was possible to diminish

the gap between the RCI-WF with clustered path-loss version and the uniform

distribution one, by the cost of considering users near the BS and decreasing the

capacity in a full-loaded scenario.
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5 Conclusions & Future Work

Through the studies carried out during the graduate program and presented

in this text, it was possible to perform a deeper investigation around themes

that have recently grown in interest to modern communication systems area,

particularly MIMO and Massive MIMO systems.

Briefly, this master’s dissertation work made extensive analysis in MIMO sys-

tems, specifically in the detection processes (Chapter 2). Also in this chapter we

have studied the application of two different antenna array structures on both the

transmit and receive sides, and their effect on the detection process. Specifically,

we studied the effect of the array factor on the correlated channel, and also the

performance-complexity tradeoff for each detection technique has been verified in

order to determine the best structure for MIMO environments. Subsequently, in

Chapter 3 the detection problem was studied under the perspective of non-linear

optimization, aiming to achieve a near-optimum BER performance. It was stu-

died the semidefinite relaxed version of the ML detection problem which was able

to deliver improved BER performances for high sized number of antenna systems,

with a polynomial time computational complexity load.

Despite the focus of this investigation be on the MIMO detection techniques

implemented at the receiver side, in Chapter 4 we draw our attention to the

transmitter, studying linear precoding techniques in a system equipped with multi

antennas in the BS and single-antenna users. Hence, this chapter aims to provide

an investigation related to an optimal power allocation scheme which maximize

the ergodic sum-rate capacity under an average power constraint. We prove that

the problem is convex and that the power allocation follows the well-known Water-

Filling strategy. It was also studied an optimal power allocation scheme related to

a finite group of clustered users and to determine the impact of this scheme in the

ergodic sum-rate capacity. Using the WF strategy our goal is to ensure the best

path-loss distribution over the cell which turns the capacity to get close enough

to the one achieved by the RCI-WF precoder in a cell with uniform random user

distribution.
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5.1 Future Work

As a future work, one of the major possibilities is to study an hybrid version

of the RCI precoder with the MMSE strategy. The idea behind this scheme is

to combine the advantages of both precoding schemes. As the MMSE provides

better BER performance and capacity in a low SNR regime and the RCI works

better in high SNR regime, the combination of both schemes can provide a better

version of the channel inversion strategy. Also, we aim to study the behavior of

the analyzed precoders under a multi-cellular broadcast channel, where the effect

of each BS needs to be considered in order to determine which BS the user will

communicate with. This scenario will add a multiuser intercellular interference

that needs to be considered, so a pilot allocation scheme will be necessary in order

to ensure the downlink transmition an to mitigate the multiuser interference at

the BS.

5.2 Work Disseminations

As a result, the analyses developed along this work have resulted so far in

the following disseminations, which have achieved trough the realization period

of the MSc. Program:

5.2.1 Conference Papers

[C1] Title: Semidefinite Relaxation for Large Scale MIMO Detection.

Authors: João Lucas Negrão, Alex Myamoto Mussi, Taufik Abrão.

Status: Work presented and published in the proceedings of The XXXIV

Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (2016).

Theme developed in the Chapter 3.

Abstract: The semi-definite relaxation (SDR) is a high performance efficient appro-

ach to MIMO detection especially for low modulation orders. We focus on developing

a computationally efficient approximation of the maximum likelihood detector (ML) al-

gorithm based on semi-definite programming (SDP) for M -QAM constellations. The

detector is based on a convex relaxation of the ML problem. A comparative analysis in-

cluding the performance-complexity trade-off of the SDR and the lattice reduction (LR)

aided linear MIMO detectors considering high number of antennas is carried out aiming

to demonstrate the effectiveness of the SDR-based conventional and large scale MIMO

detector. SDR-MIMO detector can provide a close, and under high order antennas cases,

a better performance than the LR-aided linear MIMO detectors.
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5.2.2 Journal Papers

[J1] Title: Efficient Detection in Uniform Linear and Planar Arrays MIMO

Systems under Spatial Correlated Channels.

Authors: João Lucas Negrão, Taufik Abrão.

Status: Submitted to Wiley International Journal of Communication Sys-

tems, on May 2017

Theme developed in the Chapter 2.

Abstract: In this paper, the efficiency of various MIMO detectors was analyzed from

the perspective of highly correlated channels, where MIMO systems have a lack of per-

formance, besides in some cases an increasing complexity. Considering this hard, but a

useful scenario, various MIMO detection schemes were accurately evaluated concerning

complexity and bit error rate (BER) performance. Specifically, successive interference

cancellation (SIC), lattice reduction (LR) and the combination of them were associa-

ted with conventional linear MIMO detection techniques. To demonstrate effectiveness,

a wide range of the number of antennas and modulation formats have been conside-

red aiming to verify the potential of such MIMO detection techniques according to their

performance-complexity trade-off. We have also studied the correlation effect when both

transmit and receiver sides are equipped with uniform linear array (ULA) and uniform

planar array (UPA) antenna configurations. The performance of different detectors is

carefully compared when both antenna array configurations are deployed considering a dif-

ferent number of antennas and modulation order, especially under near-massive MIMO

condition. We have also discussed the relationship between the array factor (AF) and

the BER performance of both antenna array structures.

[J2] Title: Sum-Rate Maximization in Downlink Massive MIMO

Authors: João Lucas Negrão, Taufik Abrão.

Status: Pre-Submission to Transactions on Emerging Telecommunications

Technologies - Wiley on March 2018.

Theme developed in the Chapter 4.

Abstract: In this paper, we analyse the power allocation problem aiming to maximize

the sum-rate capacity of a single cell massive MIMO broadcast channel equipped with

zero-forcing beamforming (ZFBF) and regularized channel inversion (RCI) precoding at

the base station (BS). We analyze the problem over the perspective of uniform linear array

(ULA) antenna structures at the BS, which is equipped with many antennas while mobile

terminals (MT) are equipped with uncorrelated single-antennas. The power allocation

problem is investigated in the large-scale system limit, i.e, when the number of users,

K, and antennas at the BS, M , tend to infinity with a constant ratio β = K
M . We first

derive the signal to interference plus noise (SINR) ratio for both chosen precoders. Then
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we investigate optimal power allocation schemes that maximize the sum-rate per antenna

under an average power constraint and we show that the problem is convex while the

power distribution follows the well-known water-filling (WF) strategy. We also studied

the power allocation problem considering a finite group of clustered MT’s and determine

the impact of this kind of distribution on the ergodic sum-rate capacity.
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Appendix A

A.1 UV Mapping

The UV mapping is a 3D modeling process aiming to provide a 2D image

representation of a 3D model.

Figure A.1: Spherical Coordinates System

Basically, instead of having the image in the conventional Cartesian plane we

will take advantage of spherical coordinate system, by defining the Azimuth and

the Elevation angles, represented by φ and θ respectively.

Figure A.2: Spherical Coordinates System
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In the spherical coordinate system parameters are defined as:

r =
√
x2 + y2 + z2

θ = arccos
z√

x2 + y2 + z2

φ= arctan
y

x

(A.1)

Considering an unitary radius and having the Azimuth and Elevation angles,

the u/v coordinates can be easily derived from the φ and θ. By definition, the

azimuth angle of a vector is the angle between the x-axis and the orthogonal

projection of the vector onto the xy plane and the elevation angle is the angle

between the vector and its orthogonal projection onto the xy plane. The relati-

onship between these two coordinates system is:

u = sin θ cosφ

v = sin θ sinφ
(A.2)

the values of u and v satisfy the inequalities:

−1 ≤ u≤ 1

−1 ≤ v ≤ 1

u2 + v2 ≤ 1

(A.3)

In the antenna array context, we usually search for the azimuth cut result.

Which means that the Azimuth angle φ = 0◦. In this context, we can evaluate

how the Array Factor (AF) variation as a function of the Elevation angle θ.

To exemplify this procedure we will take the azimuth cut spherical response

of a 3× 3 UPA with 0.5λ element spacing and then provide the response un the

U space.
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Figure A.3: Spherical Coordinates System
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A.2 Proof of Theorem 4.4.4

Considering the RCI precoder SINR equation (4.19), we can write this ex-

pression as

γk,rci =
c2Sk

σ2 + c2Ik
(A.4)

where c2Sk and c2Ik represent the signal power and interference energy of user k

respectively. The large limit SINR can be obtained by deriving the asymptotic

limit of each term in γk,rci. Starting with the signal component, observe that(
HHH + ξIM

)
=
(
HH
k Hk + ξIM + hHk hk

)
, where Hk is H with the k−th row

removed. Now, we can apply the matrix inversion Lemma (Sherman-Morrison

Formula) (SHERMAN; MORRISON, 1950), we have:

(
HH
k Hk + ξIM

)−1 −
(
HH
k Hk + ξIM

)−1
hHk hk

(
HH
k Hk + ξIM

)−1

1 + hk (HH
k Hk + ξIM)

−1
hHk

(A.5)

which straightforwardly can be represented as

(
HHH + ξIM

)−1
hHK =

(
HH
k Hk + ξIM

)−1
hHk

1 + hHk (HH
k Hk + ξIM)

−1
hHk

. (A.6)

Now, the signal power Sk can be rewritten as

Sk =

∣∣∣hk (HH
k Hk + ξIM

)−1
hHk

∣∣∣2(
1 + hk (HH

k Hk + ξIM)
−1

hHk

)2 =
|Ak|2

(1 + Ak)
2 , (A.7)

where Ak = 1
M

hk
(

1
M

HH
k Hk + νIM

)
hHk and ν = ξ

M
. Thus, using Lemma 4.4.2, it

is almost certain that Ak−
1

M
tr
[(

HHH + νIM
)−1
]

a.s.−−→ 0 and approximately we

have

Sk =

1

M
tr
[(

HHH + νIM
)−1
]2

(
1 +

1

M
tr
[
(HHH + νIM)−1 h

])2 , (A.8)

because, accordingly to (COUILLET; DEBBAH, 2011) Lemma 5, the removal of a

single column does not affect the normalized trace in the asymptotic scenario.

Now, using Lemma 4.4.3, we have

Ak − g(β, ν)
a.s.−−→ 0,

where g(β, ν) is the function defined in (4.30). Thus, its is expedite that:

Sk =
g(β, ν)2

(1 + g(β, ν))2
. (A.9)
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Now, moving to the interference term. Ik can be expressed as

Ik =
∑

j 6=k hk
(
HHH + ξIM

)−1
hHj hj

(
HHH + ξIM

)−1
hHk

=
∑

j 6=k hk
(
HHH + ξIM

)−1
HH
k Hk

(
HHH + ξIM

)−1
hHk

(A.10)

again applying the Matrix inversion Lemma we have:

Ik =
hk

(
HH
k Hk + ξIM

)−1
HH
k Hk

(
HH
k Hk + ξIM

)−1
hHk(

1 + hk (HH
k Hk + ξIM)

−1
hHk

)2

=
Bk

(1 + Ak)
2

(A.11)

Considering Bk = hkBkh
h
k, we can show that

Bk =
(
HH
k Hk + ξIM

)−1
HH
k Hk

(
HH
k Hk + ξIM

)−1

=
(
HH
k Hk + ξIM

)−1 (
HH
k Hk + ξIM − ξIM

) (
HH
k Hk + ξIM

)−1

=
(
HH
k Hk + ξIM

)−1
[
IM − ξ

(
HH
k Hk + ξIM

)−1
]

=
(
HH
k Hk + ξIM

)−1 − ξ
(
HH
k Hk + ξIM

)−2

=
(
HH
k Hk + ξIM

)−1
+ ξ

∂

∂ξ

(
HH
k Hk + ξIM

)−1

(A.12)

Hence, Bk = Ak +
∂Ak
∂ξ

, with Ak −
1

M
tr
[(

HHH + νIM
)−1
]

a.s.−−→ 0 and ap-

plying the Lemma 4.4.3,

Bk −
(
g(β, ν) +

∂g(β, ν)

∂ν

)
a.s.−−→ 0. (A.13)

Consequently,

Ik −
g(β, ν) +

∂g(β, ν)

∂ν
(1 + g(β, ν))2

a.s.−−→ 0. (A.14)

To complete the proof, we consider now the normalizing constant α2. Using

equation (4.17) and disregarding the power allocated term P1/2; the denominator

of α2 can be expressed as

1

M
tr

[(
1

M
HHH + νIM

)−2
1

M
HHH

]
.

Following the same steps that was used to derive the large system limit of Ak

and Bk, we obtain

α2 − P(
g(β, ν) + ν

∂g(β, ν)

∂ν

) a.s.−−→ 0 (A.15)
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Now, combining the large system results of Sk and α2, given by equations

(A.9) and (A.15), the signal energy converges almost surely to a deterministic

value given by:

α2Sk =
P(

g(β, ν) + ν
∂g(β, ν)

∂ν

) g(β, ν)2

(1 + g(β, ν))2

= P
g(β, ν)

(1 + g(β, ν))2

(
1 +

ν

β
(1 + g(β, ν))2

)
where

∂g(β, ν)

∂ν
= −g(β, ν)(1 + g(β, ν))2

β + ν(1 + g(β, ν))2
. (A.16)

Similarly, combining the large system results of Ik and α2, which are given

by equations (A.14) and (A.15) respectively, the interference energy converges

almost surely to a deterministic quantity expressed by:

α2Ik =
P

(1 + g(β, ν))2
. (A.17)

Now, combining the previous results as (A.4) we can finally express the li-

miting SINR of the RCI precoder as the equation (4.33), with γ =
P

σ2
n

and this

complete the proof.

A.3 Proof of optimal regularization parameter

First, we should rewrite the Limiting SINR as

SINR∞ =
γ

β
gΥ

where

Υ =
β + ν(1 + g)2

γ + (1 + g)2
.

The first derivative of SINR∞ over ν was taken ad is given by:

∂SINR∞

∂ν
=
γ

β

(
∂g

∂ν
Υ + g

∂Υ

∂ν

)
, (A.18)

where

∂Υ

∂ν
=

[
(1 + g)2 + 2ν ∂g

∂ν
(1 + g)

]
[γ + (1 + g2)]− [β + ν(1 + g)2]

[
2 ∂g
∂ν

(1 + g)
]

[γ + (1 + g2)]2

(A.19)
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Performing further elaborations in (A.18), we have the following steps

∂SINR∞

∂ν
=
γ

β

(
∂g

∂ν
Υ + g

∂Υ

∂ν

)
=
γ

β
gΥ

[
∂g
∂ν

g
+

∂Υ
∂ν

Υ

]

=
γ

β
gΥ

 ∂g
∂ν

g
+

[
(1 + g)2 + 2ν ∂g∂ν (1 + g)

] [
γ +

(
1 + g2

)]
−
[
β + ν(1 + g)2

] [
2 ∂g∂ν (1 + g)

]
[γ + (1 + g)2] [β + ν(1 + g)2]


=
γ

β
gΥ

[
∂g
∂ν

g
+

(1 + g)2

β + ν(1 + g)2
+

2ν ∂g∂ν (1 + g)

β + ν(1 + g)2
+

2 ∂g∂ν (1 + g)

γ + ν(1 + g)2

]

=
γ

β
gΥ

[
∂g
∂ν

g
−

∂g
∂ν

g
+

2ν ∂g∂ν (1 + g)

β + ν(1 + g)2
+

2 ∂g∂ν (1 + g)

γ + ν(1 + g)2

]
=

2γ2g(1 + g)2

β [γ + (1 + g)2]2
∂g

∂ν

[
ν − β

γ

]
= K∂g

∂ν

[
ν − β

γ

]
(A.20)

where (A.20) is obtained from (A.18), i.e,

−
∂g
∂ν

g
=

(1 + g)2

β + ν(1 + g)2
. (A.21)

Since K > 0 and ∂g
∂ν
< 0, then the stationary point is given by

ν∗ =
β

γ
. (A.22)

Moreover, since K ∂g
∂ν
< 0, then (A.20) is positive for ν < ν∗ and it is negative

for ν > ν∗. Thereby, the limiting SINR is increasing over ν until reaching ν = ν∗

and decreasing after that. With such behavior, it concludes that the limiting

SINR is a quasi-concave function of ν (BOYD; VANDENBERGHE, 2004, p. 99) and

ν∗ is the global optimizer.


